
VERBS AND ADVERBS:

MULTIDIMENSIONAL MOTION

INTERPOLATION

USING RADIAL BASIS FUNCTIONS

Charles F. Rose, III

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

June 1999

ii

c©1999

Charles F. Rose, III

All rights reserved

in memoriam

Pearl Rose

1910 – 1992

iv

Abstract

This thesis describes a new technology dubbed Verbs & Adverbs, the goal

of which is to create controllable animation through interpolation of example

motions. Use of motion capture or hand-animated source material was a key

requirement for this work since artists and capture systems currently produce

the most compelling animations. Leveraging the artist’s talent for interactive

animation is an important goal for 3D human figure animation research.

Interactive, non-scripted animations require control mechanisms. With

control, a system can be designed to react to a user’s wishes, a simulation’s

unfolding state, or both. Many control techniques are being pursued by the

research community with dynamic, procedural, and interpolated methods the

three primary groupings. Dynamic animations require a complex controller

and a dynamics simulator. Procedural animations use code-like scripts. Both

of these methods are alien to classically-trained animators. Likewise, these

techniques do not easily incorporate motion capture. Thus we have developed

a technique that supports, rather than supplants, the artist or motion capture

system. Verbs & Adverbs is a system which seeks to empower the artist, to

provide a new way to construct animations for use in the interactive realm.

This thesis describes a process for turning source motions into rich con-

trollable animation segments called “verbs,” parameterized along a number of

control axes called “adverbs.” The core mathematics for this technique uses

multi-dimensional function interpolation with radial basis functions. Once cre-

ated, verbs are placed into a “verb-graph,” an object detailing the appropriate

v

times to transition from one verb to another. The verb-graph is the entity

controlled by the interactive system.

Additionally, a number of ancillary topics are detailed in this thesis. Ro-

bust motion capture analysis, torque-minimal transitioning between motions,

and a standard motion interface, or formalism, are all developed here. These,

when combined with the Verbs & Adverbs technique, form a powerful anima-

tion system.

vi

Acknowledgements

The seashore in New Jersey is exceptionally calming in winter. Despite the

January chill, I will go there in a few weeks to savor the fact that my disser-

tation, mi diablo en forma de una tesis, is finished. It has taken me a long

time to get to this point. Nearly a decade ago, Mary Wagner first helped me

decide that earning a Ph.D. was a good goal. Ortley beach is where I’ll go to

contemplate finishing this major thing and to think about what to do next.

My lava lamps are bubbling, I have some dreamy music playing in the

background, and I’m feeling calm. I think I’m ready to write my acknowl-

edgements. I’ve been saving them up for a time when I’m feeling particularly

connected to my life, because I want to get it right. I want to effectively con-

vey the profound gratitude I feel towards those who have helped me, helped

shape me, and to those who helped me hold together through my Ph.D. All

the people I’ll write about for the next few pages have helped make life to

date fulfilling and extremely interesting. I hope that my future is as filled

with memorable persons of quality.

Education

Michael Cohen is an exceptional person to work with and for. He helped

shepherd me through my Ph.D. and I continue to learn a great deal from him.

He’s been more patient than I think I deserve. I look forward to the years

ahead and to continuing to work with Michael at Microsoft Research.

vii

Jack Gelfand helped me learn about biomechanics and to understand the

value of that body of work to computer graphics. This dissertation is better

for understanding the connections between modeling human phenomena and

modeling human processes. Thanks for that and for shoring up the Princeton

side of my bicoastal Ph.D.

Thanks to Adam Finkelstein, my third reader, and to David Dobkin and

Perry Cook, the rest of my committee. The last few months have dragged on

a little too long. Thanks for not getting too frustrated with delays (or at least

for not letting on!)

Melissa Lawson deserves special thanks for keeping track of all the details

needed to move through Princeton’s graduate program. Further thanks for

being an extremely pleasant person to talk to when I’m in town.

Thanks to my office-mates at P’ton: Ramesh Sitaruman, Dan Boneh,

James Shaw, and honorary office-mates Colleen Wirth and Steven (Schlomo)

Gortler. I can’t remember if we ever devised a scheme for the perfect human

society, but we certainly used many afternoons trying. Thankfully, the doors

at Princeton were thick and our advisors were upstairs.

My time at Princeton was memorable and I will hold the university close

to me always. My education did not start there, however, and I’d like to

remember my undergraduate mentors who helped me prepare for graduate

school. First, I’d like to thank Charles Goldberg, who took a special interest

in my education while I was at Trenton State College and who championed me

to Princeton’s department. I spent a great deal of time in the Princeton area

during my youth. Attending the university was always something I wanted to

do and he helped me get there. Charlie died recently– tragically early. My

visits to TSC will hereafter always be missing an integral component.

Mary Wagner and Ursula Wolz were two professors at TSC who got me

viii

going on the graduate school track. Mary helped me convince myself early on

that going to grad school was a laudable goal and Ursula helped me understand

that I probably wouldn’t be playing golf in the mornings before a leisurely af-

ternoon in the lab. As an undergraduate, I had to invent challenges. Graduate

school had them in abundance. Thanks for getting me ready to deal with that

shock.

I’d also like to thank the professors in other disciplines who helped make

my TSC experience so enlightening. Mort Winston, Robert Anderson, Lynn

Waterhouse, Lahna Diskin, and Lee Harrod all deserve thanks for running

some of my favorite courses. Special thanks to William DeMerrit for running

the college honors program, something I found very fulfilling.

But wait, there’s more! With my ten year high school reunion recently

past, my thoughts return to Toms River High School South. Thanks to Don

Comp and Dennis Pieretti for teaching me the basics of computer science and

helping to spark some of my initial interest in the field. Thanks to Janice

Gelzer, Sally Howe, Renee Lomell, David Fitzmaurice, and especially Angie

Cazolla for helping to foster my broad interests.

Employment

I’ve had the good fortune to be a part of one of the most exciting groups in

the graphics world for the last three years. I’d like to thank Brian Guenter for

bringing me to Microsoft Research for my initial internship which was extended

through siggraph deadlines and then to infinity and beyond. While I may

occasionally wake up and dread the commute from Capitol Hill to Redmond, I

never wake dreading my job. I am honored to be a part of Microsoft Research

and the graphics group in particular. Thanks to all of msrg for being great

coworkers.

ix

Thanks to Microsoft’s motion capture group for great support and col-

laboration. Seth Rosenthal, John Pella, Hank Mueret, and Jana Wilcoxen

all deserve special thanks for going above and beyond for our project. David

Thiel helped us produce videos and helped with sound for our demos. People

like these make working at Microsoft an honor as well as a pleasure.

Thanks to Jim Shepherd, Charles Casey, and Mary Kondash at Com-

puter Sciences Corporation, for teaching me how to work in the professional

computer science world and thanks to Stella Kern for my initial exposure to

gainful employment at the Toms River Library. The lessons you helped teach

have proven invaluable as I continue my professional development.

Friends

Michael W. Post has been an exceptionally important friend over the years

and has often helped to push me out the local minima I’m so good at finding.

I’d be much less happy, and much less close to completion, if our paths had

never crossed. Here’s to the best human catalyst I know. Let’s find another

circus maximus.

While Mr. Post convinces me to dye my hair blue (as evidenced at

http://www.research.microsoft.com/~rose), Matthew Sharkey helps me

keep my mental balance. Unchecked anxiety is my most deadly personal foe

and Matt has always been my champion in this regard. That and sixteen years

of amazing friendship intertwine our lives inseparably.

Michelle Genereux– I still love typing her cool last name after all these

years. Michelle has been one of my most trusted mentors since I first met her

when I was but a lowly page in Toms River Library’s publications department.

She is also one of my most closest friends, and I have often benefited from her

measured, well-reasoned advice.

x

Peggy Deaner, fellow New Jersey expatriate, has been an important friend

over the years from whom I can always expect sympathy and good advice. I

hope I’ve proven as useful to her. Peggy: best wishes for your own graduate

school efforts, which you have recently started. You will make an excellent

educator.

To Jen Lutton and Jen Escalante: 3000 miles does not diminish the im-

portance I place in being able to count you as friends. Go grunge and find

some jobs in Seattle so we can reform the Jersey Cabal.

To Don Mitchell, Mike Marr, Chris Liles, Briand Sanderson, and the

rest of the Crossroads dinner crowd: thanks. The conversations are always

stimulating. Soon our plans will be complete and phase two can begin!

I’d also like to thank the Friday night movie crowd, especially Daniel

Brown, our ardent movie-night organizer and resident center of the universe.

You’ve all helped put more fun and hope into life than I’ve had in recent years.

I’d like to especially thank my friends and housemates, Chris Liles and

Cindy Grimm. I know I’ve been testy lately and I’d like to thank you for

putting up with me and being great friends. Without you, there would be no

groove in our groovy Capitol Hill pad!

Family

I have a very loving, supportive, and (by today’s standards) large family. I’d

like to thank them all for being there over the years. To my grandparents,

aunts, uncles, and nifty cousins, thanks for being a good family.

Donald and John Cullerton deserve a note of thanks for showing me two

views of the academic, intellectual community I’d later join. John, I may have

dreaded your Christmas-eve quizzing about derivatives and, Donald, I may

have taken issue with some of your wilder notions, but I deeply miss both of

xi

you. The holiday’s aren’t the same now that you are both gone.

The people who deserve the greatest thanks are the members of my im-

mediate family, my sister Pamela and my parents Laurie and Charles. Under

stress, my temper can be terrible and my sarcasm vitriolic. I’m afraid that

my family has received the brunt of that unpleasantness over the years. For

putting up with me and providing a fine home, I thank you. I’m also very

grateful for having the lives of these three interesting people so closely inter-

woven with my own. I couldn’t have wished for a better set of parents or a

cooler sister.

Finally, thanks to the woman to whom this thesis is dedicated in memo-

riam, my paternal grandmother, Pearl Rose. The quiet friendship we had

helped me to understand the usefulness of quiet introspection. I thoroughly

enjoyed visiting you at the beach on the weekends; waking up to your pussy-

cat shaped pancakes, playing alone on the beach during the day, and watching

Love Boat and Fantasy Island together in the evening. This is the stuff of

childhood paradise. I remember those times fondly and miss you (and your

pride of cats) dearly.

Charles F. Rose, III

Seattle, WA

January 31, 1998

xii

Table of Contents

Abstract iv

Acknowledgements vi

List of Figures xv

List of Tables xx

1 Introduction 1

1.1 The demands of interactivity ... 1

1.2 Paths to control .. 2

1.3 Verbs & adverbs.. 3

1.4 Higher-level control.. 3

1.5 Organization .. 4

2 Human figure animation overview 6

2.1 Forward kinematics.. 8

2.2 Keyframing .. 13

2.3 Inverse kinematics ... 15

2.4 Motion capture ... 17

2.5 Parameterized motion and interactivity................................ 21

2.6 Dynamics-based motion .. 23

2.7 Procedural motion ... 38

2.8 Interpolated motion ... 39

xiii

2.9 Conclusions.. 42

3 Acquisition of examples 43

3.1 What is a motion-snippet? .. 44

3.2 The skeleton’s DOF ordering ... 46

3.3 Motion’s relation to the skeleton... 47

3.4 Time .. 49

3.5 What makes a good example? .. 51

3.6 Hand-designed examples ... 63

3.7 Motion captured examples .. 64

3.8 The motion formalism .. 70

3.9 Functional composition of motions 74

3.10 Cyclification ... 95

3.11 Conclusions.. 97

4 Verbs & adverbs 98

4.1 Overview ... 99

4.2 The canonical timeline ... 101

4.3 Verb construction .. 109

4.4 Kinematic constraints .. 114

4.5 The verb design loop.. 117

4.6 Multiresolution radial basis function approximation................ 119

4.7 Efficiency concerns .. 132

4.8 MRBF interpolation and human biomechanics 134

4.9 Some further problems ... 136

4.10 Conclusions.. 140

5 The verb graph:

a verb management scheme 141

xiv

5.1 Overview ... 141

5.2 The verb graph formalism ... 144

5.3 Restrictions on the verb graph state 152

5.4 Non-standard graph layouts... 153

5.5 Transitioning .. 155

5.6 Gesturing .. 161

5.7 Motion snippets are verbs too .. 165

5.8 Conclusions.. 167

6 Results & user study 168

6.1 Verbs .. 168

6.2 Verb-graphs ... 176

6.3 User study ... 181

6.4 Conclusions.. 183

7 Conclusions & future directions 186

7.1 Integration with other techniques 187

7.2 Skinning & musculature animation 188

7.3 Facial animation ... 189

7.4 Open issues.. 189

A The motion formalism 191

A.1 Basic motion .. 192

A.2 Clip motion.. 194

A.3 Affine motion ... 195

A.4 Time-warp motion ... 196

A.5 Mirror motion .. 197

A.6 Composition... 199

A.7 Concatenation .. 200

xv

A.8 Selection.. 201

A.9 Cyclification ... 202

A.10 Transition.. 203

A.11 Verbs .. 204

B Dynamics equations & torque-minimal transitioning 206

B.1 Results.. 209

B.2 Equations of dynamics & their derivatives 213

Bibliography 222

xvi

List of Figures

2.1 Levels of abstraction in figure motion 8

2.2 Degrees of freedom .. 9

2.3 Hierarchical vs. global motion for a two-link arm 12

2.4 Redundant IK solutions .. 16

2.5 Motion capture systems .. 18

2.6 Motion capture phases for Microsoft Precision Racing............. 20

2.7 Digital Image Design’s “Monkey” 20

2.8 Motion M produces dof values Θ given time τ and control pa-

rameters p. State information s may be kept from one iteration

to the next. .. 22

2.9 Whip motion can be generated using hybrid kinematics and

inverse-dynamics ... 26

2.10 Sensor actuator network ... 29

3.1 George .. 45

3.2 Knee dofs for a walk ... 45

3.3 A simple walking motion .. 46

3.4 The skeleton hierarchy ... 47

3.5 The initial DOF ordering .. 48

3.6 Different skeleton results in foot slide 48

3.7 Connection between canonical-time, t, and verb-time, T 50

3.8 Different walking styles... 52

xvii

3.9 Two walks not displaying structural similarity....................... 53

3.10 Wrist curl extent ... 55

3.11 A medium reach.. 56

3.12 A low reach.. 57

3.13 Dissimilar use of joint angles ... 57

3.14 Similar use of joint angles ... 58

3.15 Poor motion blend due to dissimilar DOF curves 58

3.16 Good motion blend with similar DOF curves 59

3.17 Reorienting the character .. 60

3.18 Placement of sensors for motion capture analysis 64

3.19 Fitting motion capture data to the skeleton 68

3.20 Walk motion from motion capture data 69

3.21 A hierarchy of motion types .. 75

3.22 Shifting the key-times for a clip motion................................ 78

3.23 A clipped walk motion ... 78

3.24 A walk and 2 affines .. 81

3.25 Time-warping ... 83

3.26 Mirroring anti-symmetries ... 85

3.27 A mirrored jump-dive... 86

3.28 A walk/wave composition ... 87

3.29 DOF-classes for walk/wave motions 89

3.30 DOF-usage values too broad .. 89

3.31 Walk/wave dof-usage time lapse.. 91

3.32 A concatenation .. 93

3.33 Cylification smooths out the cycle for seamless concatenation ... 96

4.1 Motions M1 and M2 .. 103

4.2 Plot of X-translation for M1 and M2 104

xviii

4.3 Strange blend due to incompatible timelines 104

4.4 Good blend with canonical timeline 105

4.5 Key-times for a walking repertoire 106

4.6 Walking key-times placed at foot-down events 106

4.7 Key-times for a idling repertoire ... 107

4.8 Key times for two extreme hands-on-hips idles 107

4.9 No key times blend .. 108

4.10 Use key times ... 108

4.11 Support constraint for a walk... 115

4.12 Verb refinement process .. 118

4.13 Initial verb to be refined ... 120

4.14 What’s wrong with the overly happy walk?........................... 121

4.15 Improved walk .. 122

4.16 Differences at happiness = +20 .. 123

4.17 The simple technique works well for these examples. The green

dots are the examples, the orange line the linear approximation

and the blue line the complete approximation........................ 124

4.18 The simple technique fails for these examples. The green dots

are the examples, the orange line the linear approximation and

the blue line the complete approximation. 125

4.19 Ill-behaved interpolations lead to unsatisfactory results 126

4.20 Two close examples made into one cluster 127

4.21 Clustering algorithm in action.. 129

5.1 A linear verb graph ... 142

5.2 A “home position” style verb graph 143

5.3 An arbitrary verb graph ... 143

5.4 Verb queue times .. 146

xix

5.5 A simple verb parameterized by adverb happiness 150

5.6 Velocity boost .. 151

5.7 A one-way graph ... 154

5.8 A graph with a special start sequence 154

5.9 A sub-graph containing a special death 155

5.10 Linear blending function, α(t) = t 156

5.11 A sigmoid blending function, α(t) = cos(−π+tπ)+1
2

.................... 156

5.12 The transition .. 157

5.13 A bad root transition ... 158

5.14 Walk with foot support constraints indicated 159

5.15 A milling about transition... 160

5.16 Primary vs. gesture weight during a gesture 162

5.17 A walk verb with the wave gesture overlaid atop it................. 162

5.18 Celebrate good times come home.. 166

5.19 The completed hierarchy... 166

6.1 Christian walking .. 170

6.2 A walk sampled across two emotional axes. The green figures

are the example motions. The rest are created through the

verb/adverb mechanism. ... 171

6.3 Emotive turns .. 172

6.4 A reach sampled along the x and y axes............................... 173

6.5 A sampling of reach errors .. 174

6.6 Comparison of raw versus reparameterized reaching. The spike

closer to zero for the reparameterized verb indicates lower over-

all error. .. 175

6.7 Three examples from two basis motions 177

6.8 A jogging verb .. 178

xx

6.9 The jogging verb from overhead ... 178

6.10 A sampling of an idle motion ... 179

6.11 Demo application .. 179

6.12 The final verb graph for the demo application 182

6.13 A line-up ... 183

A.1 A hierarchy of motion types .. 192

B.1 End position of motion 1 and beginning position of motion 2

for a transition ... 209

B.2 Multiple time exposure of transition generated from the mo-

tions in Figure B.1 .. 210

B.3 The complete animation with 5 transitions between 6 different

motions ... 210

B.4 Inverse-kinematics is used to improve the placement of the feet

during transitions .. 211

B.5 Arm walk motion transitioning to salute motion and back to

walk motion. Arm degrees of freedom affected by the transition

are colored green. .. 212

B.6 Joint angle interpolation vs. spacetime optimization 213

xxi

List of Tables

2.1 Trade-offs in stateless vs. stated motions.............................. 22

2.2 Strengths and weaknesses of controllable animation techniques . 42

3.1 Basic motion values: key-times, time-bounds, duration, and

adverbs ... 72

3.2 Motion functions: time projections and kinematic operators 73

4.1 Terminology ... 102

4.2 Range of effort in Laban notation 139

6.1 Distribution of user-study ratings for the real walking verb ex-

ample. “5” represents what the user perceived as “most natu-

ral”. If our system were unable to generate convincing motion,

all motion-captured examples would receive a “5”. 184

6.2 Distribution of user-study ratings for the real reaching verb

example. “5” represents what the user perceived as “most nat-

ural”. If our system were unable to generate convincing motion,

all motion-captured examples would receive a “5”. 184

A.1 Basic motion values: key-times, time-bounds, duration, and

adverbs ... 192

A.2 Motion functions: time projections and kinematic operators 193

xxii

List of Algorithms

2.1 Positioning the character globally 12

3.1 Steps to reorient ... 60

3.2 General reorient and reposition .. 61

4.1 Basic clustering scheme .. 128

4.2 Improved clustering algorithm.. 130

5.1 Reseting the times ... 147

5.2 Verb-graph increment function ... 149

5.3 Updated verb-graph algorithm ... 152

5.4 Simple gesture positioning... 163

5.5 Multigesture positioning algorithm...................................... 164

1

Chapter 1

Introduction

Conveying emotion in motion has been a paramount goal of human figure

animation research. More than simply enabling virtual actors to perform a

set of tasks, true believability requires them to act with style and aplomb,

daintiness and reserve, wonton assuredness, unidentifiable likability, brazen

sex appeal, or with the villain’s craven design.

Control of emotion in conjunction with control over the basic form of a

motion has been difficult to achieve. Verbs, the actions one takes and adverbs,

the qualifiers which modify those actions are the two key metaphors used in this

dissertation. Providing the ability to construct verbs, controllable animations

parameterized continuously over a set of adverbs, is the central goal of this

work. Leveraging the talents of an animator or the qualities of motion capture

without sacrificing controllability, our verbs help forward the goal of providing

emotional control in motion.

1.1 The demands of interactivity

To list emotion in motion as something yet to be achieved may appear a mis-

categorization. Luxo Jr., Pixar’s first great animated short, for example, was

replete with aesthetically rich motion. It was, however, a static piece, re-

2

maining the same at each watching. Its designers painstakingly crafted each

motion and decided when it was complete. The research community, on the

other hand, has largely been concerned with interactive, non-scripted anima-

tion. Each run-time instance of an interactive character can yield a novel

performance requiring no additional input from an animator. When interac-

tive animations can achieve a degree of quality like the great animated works,

then the world of three-dimensional games, virtual actors and avatars, online

shared environments, and intelligent agents will be a great deal more convinc-

ing.

1.2 Paths to control

Research into controllable human figure animation can be divided into three

major groupings: procedural, dynamically simulated, and interpolated. Pro-

cedural animation uses code fragments to derive the degree of freedom (dof)

values at a particular time. The procedures can be as sophisticated as needed

to provide different motion styles or to react to different conditions of the simu-

lated environment. Writing motion procedures, however, is not how animators

choose to work. Dynamically simulated figure animation uses controllers to-

gether with a simulated human to generate motion. The degree to which this

method succeeds is bounded by how accurately human motion is understood

and modeled. Both procedural and dynamic methods have the disadvantage

that they cannot leverage the talents of classically trained animators and that

they do not easily make use of motion capture technology. This is important

since animators and motion capture systems each produce compelling results.

To leverage their qualities, a system must use what these resources provide.

Interpolated animation is the third major grouping. This method uses

sets of example motions together with an interpolation scheme to synthesize

3

new motions. The primary problems of this approach are in providing a set of

meaningful, high level control knobs to the animator or runtime system, main-

taining the aesthetic of the source motions in the interpolated motions, and

motion extrapolation. Another consideration is the difficulty of acquiring the

examples. Each is precious. Additionally, for an interpolated motion scheme

to be used in a run-time environment rather than earlier in the production

pipeline, it must be efficient.

1.3 Verbs & adverbs

Verbs & Adverbs addresses these issues while providing controllable motion

usable in a runtime environment. Through the creation of parameterized mo-

tions, which we call “verbs” parameterized by “adverbs”, a single authored

verb produces a continuous range of subtle variations of a given motion at

real-time rates. As a result, simulated figures alter their actions based on

their momentary mood or in response to changes in their goals or environ-

mental stimuli. For example, we demonstrate a “walk” verb that is able to

show emotions such as happiness and sadness, and demonstrate subtle vari-

ations due to walking uphill or downhill while turning to the left and right.

Emotional and structural control are handled using the same mechanism. Aes-

thetics of the source material are maintained and used in the synthesis of new

motions as well.

1.4 Higher-level control

Interactive systems need one other major mechanism. Verbs, by their nature

are succinct motions, like walk-cycle, reach, wave, etc. We do not seek to

encapsulate all of a character’s motion for an entire script in a single verb. Be-

4

ing able to control an actor’s happiness, for example, while he played through

an hour’s worth of pre-planned actions would not be particularly interactive.

Interactive systems, therefore, make use of smaller units of animation.

The goal, however, is to yield an overall motion which looks like it could

have been planned in advance and carefully crafted offline. One of the primary

telltales that a motion is composed of pieces are awkward transitions. Smooth

transitioning, explained in Section 5.5 and Appendix B, address this problem.

Verbs, nodes in a graph, and transitions, arcs in a directed graph form

a new unit: the verb-graph. Combined with algorithms to enforce reason-

able root motion and enforce continuous adverb change, it is possible to make

smooth controllable animations composed of pieces with seamless transitions.

The verb-graph becomes the controlled object rather than the verbs in a run-

time system.

This dissertation will detail the preparation of example motions, the

constructions of verbs, a multi-resolution radial basis function interpolation

scheme, artist refinement of verbs, transitioning between verbs, and the verb-

graph. Together, these pieces can be used to create an interactive animation

system.

1.5 Organization

There are many terms and functions to be defined as this thesis progresses.

Each will be described in turn, but the reader will find Appendix A contains

the complete motion formalism, which is defined piecemeal in Chapter 3 as

new concepts are added.

This dissertation began with an introduction describing the Verbs & Ad-

verbs technique with some of its results. The following chapter is an overview of

human figure animation, placing the Verbs & Adverbs system in context. Fol-

5

lowing the overview chapter, Chapter 3 discusses the acquisition of examples,

the process of taking raw motion capture or hand animated data and putting

it into a canonical form from which verbs can be constructed. This chapter

also introduces the motion formalism, a key abstraction upon which all ani-

mation objects depend. Chapter 4 is a discussion of constructing verbs from

sets of examples, multi-resolution radial B-spline approximation, and time-

warping. Verb-graphs, the topic of Chapter 5, provide the glue with which

interactive animation systems can be constructed from verbs and transitions.

Chapter 6 summarizes results and provides an analysis of a small user-study.

Finally, conclusions and a discussion of future directions appears in Chapter 7.

Appendix A, as mentioned previously, summarizes the motion formalism and

Appendix B describes the side-topic of torque-minimal transitioning.

6

Chapter 2

Human figure animation

overview

When most people hear the word “animation,” they think of classic two-

dimensional animation such as great Disney masterpieces like Snow White

or Cinderella. These works are truly 2D creations. That the rolling magical

landscapes beyond the castle walls looked far away was due to the artist’s

illusory skills. Any change in the position of the virtual camera in the scene

would require the artist to paint new images.

Three-dimensional computer graphics generates a virtual environment,

which can be viewed from any angle, even cinematically uninteresting ones. In

this sense, it is a very free and unrestricted medium. Virtual camera movement

can be provided by the computer so as to not destroy the illusion of solidity.

Characters in 3D environments can more easily interact with one another

or with objects in the environment while still allowing unrestricted camera

motion. A character picking up a cup in a 3D environment, for example, has

a well-defined problem to solve. One possible solution is found in [123]. The

2D problem may seem simpler at first. The problems of registering (aligning)

the hand of the 2D character, or sprite, projecting the correct view of the cup

for an arbitrary camera angle, and placing the cup back on the table so that it

7

actually appears to be on the table show that 2D animation is in fact harder

in some regards.

This chapter will overview 3D figure animation research, the issues and the

different paths to resolving these issues developed by researchers in the field.

Verbs & Adverbs is an interpolated animation technique, but understanding of

competing approaches will be valuable to the reader in gauging the qualities

and effectiveness of the technique.

Three-dimensional animated characters are known by many names. Char-

acter is one often used here. Actor, virtual actor, or synthetic actor are other

terms used in this thesis, each made popular by the work of the Thalmann and

Magnenat-Thalmann who seek to make synthetic actors as lifelike and com-

pelling as living actors [137]. Avatar, a term made popular in Neal Stephen-

son’s influential novel Snow Crash [134], denotes the virtual manifestation of

a living user. Two other terms, figure and articulated figure are terms I’ll use

heavily in this thesis.

A useful way to view many of the notions presented in this chapter is

a set of levels of abstraction. The chapter will progress from a low level of

abstraction to higher levels. Verbs & Adverbs is a mid-level system. Figure 2.1

shows the levels from low abstraction at the bottom to high at the top. This is

a chart for a single character. Crowd behavior and multi-character interaction

are also important and will be covered in this overview briefly. Verbs & Adverbs

is an example of interpolated animation. Badler [5] treats these topics much

more extensively in his latest virtual humans work. Here I am concerned solely

with abstractness as it relates to the motion of one character.

Some useful overviews have appeared recently which may prove useful to

the reader. Allbeck and Badler [1] frame the problem of 3D articulated figure

animation providing a healthy snapshot of the field with extensive bibliog-

8

High level planning
Behavior modeling
Biomechanics / dynamics simulation
Torque-minimal motions (spacetime optimization)
Force / acceleration calculation (forward dynamics)
Procedural animation
Interpolated animation
Inverse-kinematic positioning
Interpolation between stills
Motion playback
Rigid-body articulated figures (kinematics)
Disconnected moving objects

hi
gh

lo
w

ab
st

ra
ct

ed
ne

ss

Figure 2.1: Levels of abstraction in figure motion

raphy. They look to answer how close animation research is to fulfilling the

vision in Snow Crash. Likewise, Earnshaw synopsizes some of the primary

virtual humans work currently underway in [43]. Other traditions may prove

useful in the understanding of animation. Dance and human motion analy-

sis, for example, are tied deeply to human figure animation. Bartenieff and

Lewis [17] describe the field of motion analysis. Of particular note is Laban

analysis, used in the dance community, which seeks to describe in a systematic

qualitative way the subtleties of human motion.

2.1 Forward kinematics

Disconnected objects moving in space is the lowest reasonable level of ab-

straction for figure animation. It is a useful level for detailing the motion,

or kinematics, of simple rigid body objects like tables, chairs, and, of course,

teapots. Simplicity here refers not to the geometric complexity of the ob-

jects, but to the fact that they have no moving pieces. Objects composed

9

Y

X

Z

Figure 2.2: Degrees of freedom

of sub-objects, which move in relation to one another, are known as articu-

lated objects. The position and orientation of any simple object or part of a

more complicated object can be described using six numbers: three to trans-

late along the X, Y, and Z axes, and three to rotate around them each in

turn. The last three values are called Euler angles and they together with

the translational components are shown in Figure 2.2. Each of these values is

called a degree of freedom and represents one manner in which an object can

be positioned or oriented. These six degrees of freedom (dofs) together can

position and orient an object arbitrarily in space. Euler angles are the most

widely used formulation, despite having inherent problems for certain opera-

tions such as motion blending, something done here extensively. Quaternions,

described by Shoemake [129] [130], Duff [42], and Barr [16], provide a more sta-

ble representation. They are used here for transitioning (Section 5.5), though

not blending as our motion capture analysis method described in Chapter 3

alleviates the problems normally associated with Euler angles with respect to

motion blending.

A 3D character like a person is traditionally constructed from smaller

units. A human would likely be made up of a torso, upper-arms, forearms,

hand, head, thigh, lower-leg, etc, depending upon the desired level of com-

10

plexity of the figure. Chadwick [31] provides a good overview of linked figure

animation. Most of the results shown later in this thesis use a 44 dof model

with 16 major body segments. This has been enough to yield believable human

motion without too many extraneous dofs. More accurate models, for exam-

ple those that include fingers and toes, can certainly be designed. Nedel and

Thalmann [109] use a 62 dof model with 31 separate body segments. Mau-

rel, et. al. [97] describe an even more accurate model of the human shoulder

complex, the part of the body which causes the most trouble since it is not well

approximated by the articulated rigid body abstraction. At eighteen dofs per

shoulder, however, it may not be practical for use in many circumstances and

may be cumbersome for animators. Badler describes skeletons with multiple

levels of detail in [7] and [5], which can make practicality and correctness less

at odds.

Articulated figure movement is described hierarchically. Motion of one

part of the body, like the knee, is expressed in terms of its parent body part.

Likewise, movement of one part of the body effects all the subordinate parts of

the body. For the knee, the ankle and foot would probably be subordinate and

the center of the hip would likely be the root point. The root joint is special in

that it is used to position and orient the entire body in the global coordinate

frame (or any frame to which the body is placed subordinate). Likely roots

are between the hips, the feet, and hands. Typically the root is chosen based

upon the current action. For example, a character hanging from a handhold

would likely be rooted at that hand.

The basic unit of the articulated figure is the joint or node. There

are many ways to define joints, some more general than others. Denavit-

Hartenberg notation is a widely used general formulation and is detailed in [41].

In this thesis, a simple formulation of joint will be used. Joints each

11

have one associated motion (dof), a translation or rotation along or about

one of the principle axes. Translational joints are referred to as prismatic and

rotational as rotary or revolute. Joints are offset from and parented to another

joint save for the root which has no parent. Joints have a potentially empty

set of child joints. A joint, therefore, can be defined as

J = {o, D, C} (2.1)

where o is the vector offset relating the joint to its parent joint, D is the type

of motion, to be shortly defined, and C the set of child joints parented in the

joint J . D can be a translation about the X, Y, or Z, or a rotation about

one of those axes. Additionally, the joint can have no motion, indicating that

it is an end-effector. The end-effector joint has no motion or children, just an

offset. It is a place onto which objects are grafted or where interaction with the

environment likely occurs. Typical effectors are the fingers or palm. Multiple

dof joints, such as the shoulder, are created by using multiple one-dof joints

with zero-length offsets.

The position a character takes when all dofs are set to zero is alternately

called the birth, home, or rest position. This configuration is due entirely to

the effect of the sums of the joint offsets from the root out to the parts of

the body. When dofs are not zero, the position of the body parts can be

described by matrix multiplication. Figure 2.3 shows a two link-arm. Global

dofs are shown in green and hierarchical dofs shown in red.

The global position and orientation of a character can be determined for

the hierarchical figure using the recursive function Algorithm 2.1.

12

Figure 2.3: Hierarchical vs. global motion for a two-link arm

Algorithm 2.1 Positioning the character globally
GlobalPosition (J, Mp)

{

J.M = Mp •

offset from parent︷ ︸︸ ︷

1 0 0 0

0 1 0 0

0 0 1 0

x y z 1

•

dof motion – use one︷ ︸︸ ︷

1 0 0 0

0 1 0 0

0 0 1 0

d 0 0 1

︸ ︷︷ ︸
X−translation

1 0 0 0

0 cos d sin d 0

0 − sin d cos d 0

0 0 0 1

︸ ︷︷ ︸
X−rotation

1 0 0 0

0 1 0 0

0 0 1 0

0 d 0 1

︸ ︷︷ ︸
Y−translation

cos d 0 − sin d 0

0 1 0 0

sin d 0 cos d 0

0 0 0 1

︸ ︷︷ ︸
Y−rotation

1 0 0 0

0 1 0 0

0 0 1 0

0 0 d 1

︸ ︷︷ ︸
Z−translation

cos d sin d 0 0

− sin d cos d 0 0

0 0 1 0

0 0 0 1

︸ ︷︷ ︸
Z−rotation

for all children J.Ci

GlobalPosition (J.Ci , J.M)

}

13

J is the joint for which the global position is being calculated. Mp is the

global matrix of J ’s parent. The x, y, and z values are the offset of J from

the parent. The joint’s dof value is d. To position the entire character a top

level call is made with the character’s root for J and the identity matrix I

for Mp. The joint is very reminiscent of the coordinate frame and it is not

surprising that 3D articulated figures are very naturally created in a retained

mode graphics architecture.

2.2 Keyframing

As Lasseter pointed out in his siggraph’87 paper Principles of Traditional

Animation Applied to 3D Computer Animation [85], 3D animation is a creative

process much like its 2D predecessor. Similar techniques are used by animators

in order to create stunning work. Thomas and Johnston’s landmark book

Disney Animation– The Illusion of Life [138] describes these principles, like

anticipation and ease-in/ease-out, in detail.

Hand animated 3D pieces are typically constructed by the animator using

a process known as keyframing. Important poses of the character are hand

designed and placed in time. The in-between frames are generated by an

animation system, such as SoftImage (TM) or 3D-Studio/Max (TM). The animator

refines the keys and adds new ones as necessary until satisfied with the result.

Maestri [94] provides a good overview of this process. Steketee and Badler

describe keyframing techniques and some motion transitioning in [133].

The resulting motion data is a set of dof curves, which when applied to

the appropriate skeleton and played back at the correct rate, reproduce the

original motion. A dof curve is a curve parameterized by time and which

yields values for one dof. A dof curve is one way to implement a dof

function and is the way typically used in this dissertation. If the motion data

14

is sufficiently continuous, storing every frame is wasteful. Human motions are

usually well represented using a smooth representation since (in general) we

make smooth motions. Piecewise-linear, B-spline, hierarchical B-spline, and

wavelet representation would all be useful ways to approximate the frame-by-

frame data. In this thesis, we typically use B-splines.

While all the basis function types are useful, some are more desirable

than others. Compression and fidelity, as always, are the two competing goals

when choosing the correct basis function for approximating data. This is an

especially important concern for motion capture data since it is copious in

quantity. For example, a soccer animation data-set used in [124] takes a great

deal of space in its raw form: 215,650 coefficients for roughly 2.7 minutes of

animation.

What becomes apparent from an inspection of the data, however, is that

the curves are relatively free of high-frequency information. A small set of

coefficients of smooth basis functions will maintain high fidelity. A number of

candidate encodings could be chosen. As stated previously, this thesis primar-

ily used a B-spline representation. Furthermore, not all the dof curves have

the same curviness (frequency). Many of them are very smooth, requiring far

fewer coefficients. Coefficient requirements are shown in the table for different

quality ratings. Capin, et. al. [28] explore the bandwidth requirements of

human motion data over a networked environment.

A wavelet representation is also likely to be useful for motion data, though

no analysis of it has been performed here. Wavelets would be particularly

useful for progressive transmission and refinement over a high latency network

like the internet. The effectiveness of wavelet representations has been well

established by [58] [91] [48].

15

2.3 Inverse kinematics

Forward kinematics positions a character globally given a set of dof values.

Inverse kinematics determines a set of dof values which will yield a desired

global configuration. Two standard methods involve linear and non-linear

minimization of error between desired and current global configuration. Each

of these methods is iterative and highly dependent upon starting guess.

If the initial guess is sufficiently close to the desired configuration, a sim-

ple linearization can be used. While kinematic positioning is non-linear (Al-

gorithm 2.1), it is sufficiently linear for small changes of the dofs. Iterative

improvement, therefore, converges to a solution. The dof values needed to

satisfy a kinematic constraint can be found by solving the linear system

J∆θ = ∆x (2.2)

where J is the Jacobian of the dofs with respect to the desired global con-

straint, ∆x the error vector between goal and current, and ∆θ the solution.

By iterating through each of the constraints, the figure’s configuration will

likely converge to a solution satisfying each. This cannot, however, be ensured

since articulated figure positioning is non-linear, as was seen in Algorithm 2.1

and since two or more constraints may vie with one another if they are in-

compatible, such as might occur with a knee and foot constraint further apart

than those joints actually are. Typically, this technique is useful for one con-

straint or sets of constraints which do not interfere with one another, such as

might occur if each of the extremities of the body were constrained within the

workspace of the figure. An overview of this technique can be found in Gi-

rard and Maciejewski[54]. Another good source is Watt and Watt [143] or [22].

Maciejewski [92] describes parallel network approach for solving ik problems

using this technique.

16

Figure 2.4: Redundant IK solutions

A much more robust, though slower, method that can handle multiple

position and orientation constraints simultaneously was developed by Zhao

and Badler[150]. The goal is to minimize the non-linear cost function F ,

F (Θ) =
∑

j

(
(Pj∈J(Θ)− P̂j)

2 + (O0,j(Θ)− Ô0,j)
2 + (O1,j(Θ)− Ô1,j)

2
)

(2.3)

where Pj(Θ), O0,j(Θ), and O1,j(Θ) are the position and orientation vectors

for the jth joint and P̂j, Ô0,j, and Ô1,j the desired position and orientation

vectors. The paper details the differentiation of this cost function F which

enables minimization using a robust non-linear solver such as bfgs [53].

Each of these techniques is sensitive to its initial guess. This causes prob-

lems since 3D manipulators are (in general) redundant. Figure 2.4 shows

two possible solutions a two-link manipulator might take to position the end-

effector on the green dot. In general, such as with a three-link arm positioning

to the green dot, there are an infinite number of solutions.

Furthermore, there is no guarantee that a similar inverse kinematics prob-

lem yield a similar dof values. An epsilon change in the constraints may

trigger a large change in resulting dof values. Rose et al [124] dealt with this

problem by solving for ik constraints over the whole of the motion rather than

on a frame to frame basis, dubbed spatio-temporal ik. Integration of error

coupled with a continuous representation of motion (in that case B-splines)

yielded smooth ik solutions. Michael Gleicher [55] [56] uses a similar, more

17

efficient, technique to achieve impressive results in retargetting motion from

one articulated figure to another. Inconsistent ik causes particular trouble to

motion capture analysis, as will be explored in Section 3.7. That section will

detail ways to combat this problem in that light.

2.4 Motion capture

Hand designed animations are time consuming to produce and can lack the

highly realistic look desired for sports games or for animation composited into

feature-length (non-animated) motion pictures. Motion capture is a popular

way to acquire motions that convey gritty realism to the viewer. Originally

this technique grew out of the motion analysis needs of the biomechanics com-

munity, but now is firmly in the service of computer games and the motion

picture industry [116].

Motion capture is more like puppetry or physical acting than animation.

A human actor, combined with a sensing technology is the way pose informa-

tion is extracted. An analysis phase fits this pose information to a hierarchical

articulated figure. Over time, changes in pose produce an animation. Motion

capture systems are commercially available. The three main types are optical,

magnetic, and exoskeletal. At the present time, no type is clearly superior;

each has useful qualities. Figure 2.5 shows an example of each type of motion

capture system.

Optical systems use markers placed on the body together with multiple

calibrated cameras to extract global 3D position information. Occlusion is

this technique’s primary flaw, though it produces some of the most accurate

data and allows the greatest range of motion for the motion capture actor.

Occlusion occurs when one or more of the cameras cannot sense a marker due

to the actor’s body being in the way. Cost, however, is a practical limitation,

18

MotionAnalysis

Adaptive Optics, Inc.

Ascention MotionStar Ascention MotionStar

Analogus Gypsy

Analogus Gypsy

Magnetic

Optical

Exoskeletal

Figure 2.5: Motion capture systems

19

as an optical system is typically three to four times as expensive as a magnetic

system.

Magnetic systems rely on a magnetic field and a set of sensors attached

to the body. Occlusion is not an issue and orientation data can be read along

with position, which is a plus. Magnetic systems pose numerous challenges,

however. Ferrous metals will disrupt the field, so metallic props cause prob-

lems. Wooden props, put together with brass nails and screws, are often built,

as in the wooden racecar built as a prop for the motion captured pit crew in

Microsoft Precision Racing (TM), as shown in Figure 2.6. Another problem is

the cabling. Even non-tethered systems seriously restrict the range of motion

available to the motion capture actor. The extent of cabling can be seen in

Figure 2.5. Magnetic motion capture is constraining. Hiring actors able to

overcome the awkwardness of the apparatus is key to getting quality motion.

Exoskeletal systems fit the actor with a metal exoskeleton that moves to

conform to the motion of the actor. This motion is recorded through various

angle and length sensors built into the exoskeleton. This method is the most

restrictive one to the actor’s range of motion. Falling would likely prove a

costly and painful mistake. Also, as none of the sensors is global, error builds

up from the root of the exoskeleton, typically between the hips, to the ex-

tremities. This can cause unacceptable drift in position and orientation of the

hands and feet.

An interesting twist on the exoskeleton is to remove it from the actor.

Then the exoskeleton becomes an input device for stop-motion animations

like the great movies of Ray Harryhousen. Digital Image Design sells one such

system, the Monkey (TM), shown in Figure 2.7.

Considerable literature exists on using and editing motion capture data in

animation, (e.g.,[6] [26] [112] [124] [148]). daSilva, et. al., propose an anima-

20

Figure 2.6: Motion capture phases for Microsoft Precision Racing

Figure 2.7: Digital Image Design’s “Monkey”

21

tion system based on motion capture data incorporating methods for pulling

motions apart, concatenation, transitioning, etc. in [37]. Editing suites were

also described in many of the previously mentioned papers and are embodied in

successful commercial products like Kinetix Character Studio 2.0 (TM) and the

kinematics software from Nichimen Graphics. Lamouret and van de Panne

cut, paste, and modify motions from an example motion database to fulfil

animation tasks in [83].

Motion capture for use in animation has been surveyed in [96] and vari-

ous descriptions of the end product of its use have appeared (see, for exam-

ple, [93] [66]). The work by Molet et al. [105] gives an alternative technique

to inverse kinematics for going from sensors on an actor to an animated artic-

ulated figure.

As will become clear later, motion interpolation is much simplified if a

consistent treatment of dof angles is generated by the motion capture analysis

for a set of similar motions, such as a repertoire of walks. As motion capture

data is noisy, robust motion capture processing can be the difference between

a process improvement or process nightmare. Chapter 3 will detail the process

developed in support of the Verbs & Adverbs system. Additionally, the motion

capture system was used for the commercial products Microsoft Baseball3D (TM)

and Microsoft Precision Racing (TM).

2.5 Parameterized motion and interactivity

As mentioned in the introduction, control over motion is an essential require-

ment for interactive animation. Parameters, control variables, are the way an

animation is directed from one moment to the next. Motions can either main-

tain state or be stateless. Motions with state “remember” and can use that

knowledge to make judgements regarding future character positions. State-

22

Mp
t

q
Mp

s

t
q

no state has state

Figure 2.8: Motion M produces dof values Θ given time τ and control pa-

rameters p. State information s may be kept from one iteration to the next.

Pro Con

Has-state Decisions based on history Hysterisis – history dependent

Non-repetitive behavior Unidirectional time (in general)

Dynamic simulation Sensitivity to time step

No-state Rewindable No dynamic simulation

Not sensitive to time step No reasoning about past

Table 2.1: Trade-offs in stateless vs. stated motions

less motions take as input only the time variable and the control parameters.

Figure 2.8 depicts these two motion types. There are reasons for each kind

of motion. Some trade-offs are listed in Table 2.1. While hysterisis can be

used to form more complex actions based on past actions, keeping state can

be restriction. It is listed in the con category for that reason. Likewise, the

inability for stateless systems to reason about the past is listed as one of their

cons.

Parts of the Verbs & Adverbs system are stateless (verbs - Chapter 4) and

some have modest state (verb-graphs - Chapter 5). One important aspect of

the system is that no part is sensitive to the size of time-steps, thus time-steps

can grow arbitrary large as system resources are balanced at runtime. Each

of these issues will be addressed in the appropriate sections.

23

2.6 Dynamics-based motion

Forward dynamic simulation generates the behavior of objects in a virtual

space given a set initial conditions, forces and torques acting upon the bodies,

and descriptions of the dynamic properties of the objects. No one has done

more to acquaint the graphics community with the uses of dynamic simulation

than David Baraff. His papers detail rigid body dynamics [9] [10], friction [11],

non-rigid dynamics [12], efficiency concerns [13] [14], and, most recently, cloth

dynamics [15]. Efficiency is a major problem with dynamic simulation and

limits its usefulness in the general case. Much of the work in this area has in-

volved finding efficiency gains for special case problems, as Milenkovic [104] did

for systems of large numbers of tightly packed objects. Using modal dynamics

yields Pentland and Williams [111] some interesting effects and efficiency gains.

Some of their objections to other techniques are alleviated by [51]. Metaxas

and Terzopoulos [102] describe how to simulate dynamically deformable ob-

jects. Witkin, Welch, and Gleicher describe inter-active-time modification to

dynamical simulations in [146] and [149].

For dynamics to be used with articulated figures, a dynamics formulation

which supports hierarchical linked figures must be used. The formulation of

the dynamics equations directly effects the efficiency of the algorithms using

to compute it. Le Grange’s formulation has been used, but suffers from being

exponential in the number of dofs [147]. Well understood compilation tech-

niques like common subexpression elimination can be used to reduce the size of

the resulting expression trees considerably [91]. Complicated, linear-recursive

formulations were developed by Featherstone [47], Hollerbach [76], and Bal-

afoutis and Patel [8]. Balafoutis’ forms the most efficient formulation to date

and uses a tensor formulation with clever identities that reduce the equations

considerably. Schröder and Zeltzer [128] and McKenna and Zeltzer [100] used

24

Featherstone, Liu and Cohen [89] used Hollerbach, and we used Balafoutis and

Patel in [124]. That formulation is detailed in Appendix B.

Dynamic simulation, however, presents a serious problem to the animator:

uncontrollability. To make his compelling dynamically simulated sequences,

for example, Baraff had to iteratively tweak the initial conditions in order

to have it achieve a desired result, not an interface useful to your average

animator. Interactive animation requires that a system or user be able to

direct the outcome of the animation. Barzel, Hughes, and Wood [18] discuss

this problem and make a key observation: there is enough uncertainty in

the understanding of dynamics properties and simulation such that one can

“fudge” the results of a dynamic simulation to achieve a desired effect and still

have it look physically “correct”. Likewise, Chenney and Forsyth [33] discuss

techniques for not simulating things which are not seen by the user. Events

not seen by the user are ones which can be heavily modified without breaking

the illusion of physical realism and controlling such events could help, though

not solve, the problem of directing characters.

Two approaches to overcoming the controllability problem are discussed

here. Spacetime optimization and controller optimization are the two primary

ways dynamics has been used for generating motion. Spacetime optimization

determines dof trajectories given initial conditions, a set of constraints which

frame out the overall animation, and a quality function to be minimized. It is

an open-loop process and can therefore be categorized as stateless. Controller

optimization couples the forward dynamics process with a feedback controller

to achieve a desired animation by modifying a set of control parameters, like

torques, from one time-step to the next. optimization

25

Spacetime optimization

Forward dynamics can be used to calculate the position of a character over

time given an initial state and a set of torque functions for the dofs. It could

be expressed as

P = f(I, T)

where P denotes a character’s position over time, I the initial position and

velocity of the character’s dofs, T the torque functions, and f the forward

dynamics process. Typically, everything is known save P .

Inverse dynamics calculates the torque functions required to achieve a

given set of position functions. In the terms above,

T = f−1(I, P).

Here the position and initial conditions are known. The inverse dynamics

process, f−1, calculates the torque functions need to achieve the given P and

I.

Isaacs and Cohen [79] described the dynamo (dynamic motion) system

at siggraph’87. It incorporated ideas from keyframing and dynamics. The

system used keyframing to generate a position function P for a subset of the

dofs in a system. Given these trajectories, torques could be calculated on the

other dofs using inverse-dynamics. Positions could then be calculated for the

reamining dofs using forward dynamics. Figure 2.9 shows a problem solved by

this system. The whip handle trajectories are known, specified by an animator

with keyframing. Given that, torques could be calculated on the whip dofs.

From these, position trajectories for the whip could be determined.

Witkin and Kass [147] first coined the term “spacetime constraints” in

their siggraph’88 paper. Unlike the work of [79], these constraints could be

on position, velocity, or acceleration of the joints. Given the P , a set of force

26

Step 2: Torque on whip calculated by f -1

Step 1: Whip handle keyframed

Step 3: Whip DOFs determined using f

Figure 2.9: Whip motion can be generated using hybrid kinematics and

inverse-dynamics

functions T are generated satisfying P . In general, there can be an infinitely

large (or empty) set of such functions. The quality of the solution is rated

using a fitness functions, typically used energy. A non-linear optimizer is used

to drive the used energy towards zero.

Spacetime optimization thus attempts to solve for the position functions,

subject to a set of constraints while minimizing a given quality rating.

P = S(C, O)

where P is unknown, S indicates the spacetime process, C a set of kinematic

constraints, and O a fitness function. Typically, the fitness is proportional to

the energy expended, or

O(P) ∝ T 2

the square of the torque functions integrated through time. Spacetime con-

straint optimization, therefore, often uses inverse-dynamics in its inner loop

to rate the quality of a proposed position function, P . The constraints could

27

be set either by an animator or procedurally by a system. If the optimization

process were sufficiently fast, this could be done in real time. For complex

human figures, however, this goal has not been achieved, at least for torque-

minimization spacetime optimization, due to the complexity of constrained

non-linear optimization and the time required to compute the quality function

O using inverse-dynamics.

Cohen [35] improves upon the initial work of Witkin and Kass in two

ways: representation and interaction. He changed the representation of the

dof curves from piecewise-constant to B-spline, which is continuous and also

requires fewer coefficients (in general). By working with “spacetime windows”,

subregions of time for optimization, he enabled greater animator interaction

with the optimization. Liu, Gortler, and Cohen [91] note that by changing to

a multi-res representation, namely B-spline wavelets, faster convergence times

can be achieved. Speed improvements were also be achieved through compiler

techniques such as graph reduction. Liu and Cohen [89] later improve upon this

by switching to a better dynamics formulation. Refinements on the interface

enable easier animator interaction with the system in [90].

In Rose et al [124] we used the Balafoutis linear recursive dynamics for-

mulation for spacetime optimization of motion transitions for a human figure

with 44 dofs. Quality transitions enabled the joining of two segments of

motion capture or hand animated source. The intuition for torque minimal

transitioning is from Burdett, Skrinar, and Simon [27]. Joint torques, they

found, are a reasonable predictor of metabolic energy. Experience has shown

that motion which minimizes metabolic energy looks natural. This leads to

the minimization problem:

minimize e =

∫ τ2

τ1

∑
j

Ej(τ)2dτ

where Ej is the energy function for the jth dof. A more complete description

28

of this technique, the full motion equations, and results is found in Appendix B.

Controller optimization

A controller is an object that observes the state of a dynamically simulated

figure, directing it to perform some actions in order to meet a goal. Typically,

a controller is an object with three kinds of variables. First are the state

variables used to sense the system being controlled, such as a linked figure

existing in a dynamically simulated world. Control parameters encode the

desired state of the system. This state is the goal that the controller, in

concert with the simulated figure, is trying to achieve. Control parameters

may include things like speed or a desired 3D location, such as in [132] and

[141]. The inner workings of the controller (the controller function) transform

control parameters and state variables into actions, typically forces applied at

the joints. In other words,

T = f(S,C)

where T are the torques, f the controller function, and S and C the state

and control variables. Often, the controller function is itself parameterized by

another set of variables known as weights or gains, so

T = f(S,C,G).

This is an advantageous form since it allows a designer to construct the general

form for the controller and then tune it by manipulating the gains until a

desired result is achieved. Another option is to use non-linear optimization

to automatically find gain settings that cause a controller/figure to perform a

certain task.

This task, if stated simply enough, leads naturally to a fitness function

that rates the effectiveness of a proposed set of gains. An example fitness

29

sensors hidden
nodes

actuators

Figure 2.10: Sensor actuator network

function would be the magnitude of the distance traveled by the figure over

a certain period of time. The faster the motion, the “better” the controller.

Given a fitness function, optimization can be performed using a variety of

techniques to find an effective controller.

Sensor actuator networks is a model proposed by van de Panne and Fiume

[141]. A sensor actuator network, or san, is similar in form to a neural network,

though with time delays on propagation of values through the network. A layer

of sensors is connected to a layer of hidden nodes, which are in turn connected

to a layer of actuators that drive the system, as shown in Figure 2.10. Each

of the arcs has a weight that is determined by the controller optimization.

The weights for these arcs are the gain variables that tune the controller. A

node outputs 1 if its weighted input sum is positive, otherwise it outputs 0. If

the actuators receive a positive input, they apply torque to their dof. Three

fitness functions were used in this work. One judged distance traveled, another

jump height, and a third location tracking. The optimization method used was

to build an initial set of random controllers (i.e. random weights on the arcs)

and then perform a hill climbing improvement on the most promising members

of the initial set.

30

A number of locomotion schemes like walking, running, or bounding were

discovered using the san formulation for a number of different figure topolo-

gies. Earlier work [142] used controllers of in the joint-torque state space to

generate motions like a back-flip or a parking car. Huang and van de Panne [78]

use search to discover the parameters to tune a controller to get their articu-

lated figures to backflip and hop.

Ngo and Marks in Spacetime Constraints Revisited [110] describe a genetic

algorithm for finding coefficients for a stimulus-response model of motion– a

kinematic simulator with feedback control. The controller is structured as

a set of stimulus-response pairs which match joints, trigger conditions, and

desired response. A stimulus is a function of the form:

W

(
1−max

j

(
λj(vj − v0

j)
)2

)

where the λj and v0
j ’s are the values (gains) determined by the controller

search, vj the sense variables which gauge the state of the world, and W a

normalization factor. The highest valued stimulus at a given step determines

which response is activated for the next time-step. The response is a pose to-

wards which the character approaches. The stimulus-response model did not

have control parameters. The controllers could perform only one task. The

optimization method used a genetic algorithm, which is particularly adept at

finding good minima in complex (and potentially discontinuous) non-linear

spaces. Ngo and Marks’s use of the genetic algorithm for optimization is note-

worthy in the animation field. An extensive overview of genetic optimization

can be found in Holland [75] and Goldberg [57]. Using this formulation, dif-

ferent locomotion styles for different kinds of characters were generated.

Continuations to Ngo & Marks’ initial work are described in Auslan-

der, et. al. [4]. While these authors use the term “spacetime constraints”, this

is fundamentally different work from what is typically intoned by the phrase.

31

Their stimulus-response formulation is a closed-loop controller approach to an-

imation, which differs from the open loop energy minimization work of Witkin,

Kass, Cohen, et. al., or the kinematic constraint work of Gleicher.

Tu, Terzopoulos, and Grzeszczuk [139] [136] use dynamics, motion con-

trollers, and state machines to simulate artificial fish, including feeding and

predation. Grzeszczuk, Terzopoulos, and Rabbie [59] [135] describe learning

methods which can be used to generate the needed motion controllers. With

an eye to efficiency, Grzeszczuk, Terzopoulos and Hinton’s latest work [60]

learns to approximate accurate physically correct behavior.

Karl Sims took the controller search idea to a new level by specifying only

the simulator and the language in which creatures and their controller could be

described in [132] [131]. Using genetic programming, he developed a system

which could simultaneously find a creature’s structure and its controller in

order to select for such traits as speed, jump-height, or the ability to track a

user-specified source point in 3D. One interesting discovery he made is that

genetically-programmed creatures find bugs in a dynamic simulator. One such

creature oscillated at just the right frequency to cause an overflow bug so that it

could fly skyward with a healthy dose of free kinetic energy. The creatures Sims

found have been described as “spooky” in their behavior, bringing forth visions

of digital trilobites. This work is some of the most visionary in animation

research, combining dynamic simulation and genetic programming. It has yet

to prove effective, however, for human figure animation. The space of creatures

and controllers is very large; human figures moving in humanlike ways occupy

a tiny subspace. Koza [81] [82] provides the most extensive overview of the

field of genetic programming.

32

Biomechanics and its applications

The work on controller optimization, while quite interesting, has not lead to

controllable human figure animation, arguably the most important form of mo-

tion. It is unlikely, for example, that a search through creature and controller

space is going to discover human motion without guidance. Biomechanical

knowledge, therefore, has been integral for designing effective controllers for

human-like figures.

Biomechanics is a huge discipline spanning the robotics, biology, neurol-

ogy, and psychology fields. This section will detail some of the biomechanics

work that has proven the most useful to the animation community, together

with the successful applications to which this knowledge has been applied.

Biomechanics has been used by the animation community in many ways: ba-

sic dynamics, musculature, balance, arm positioning, and locomotion. I’ll

overview a few of the contributions from each area.

Body and balance

Dempster and Gaughran’s Properties of Body Segments Based on Size and

Weight [40] describes the dynamical properties of the human body such as in-

ertia tensor and mass distribution. In macabre detail, this paper describes the

cadaver sectioning used to isolate the body segments studied and the meth-

ods for calculating the body’s dynamical properties. It was used by Hodgins’

group in designing their figures for their work in [70].

Chen and Zeltzer [32] developed techniques for simulating a human mus-

culoskeletal system. This work included a model of muscle shape, force, and

motion. Scheepers, Parent, Carlson, and May [127] describe a muscle model-

ing technique which makes use of the animator’s eye when defining the mus-

culature of the human form. Wilhelms and Van Gelder [145] show a similar

33

system which models muscle form and includes a skinning model. These last

two works did not seek to simulate the functioning muscle, but rather describe

the appearance of the musculature in certain configurations. In that respect,

these works are similar to the Verbs & Adverbs system in that they model the

phenomenon rather than the underlying process which give rise to it.

Badler’s Jack (TM) system described in Simulating Humans [7] and in nu-

merous other publications, makes great use of biomechanical know-how. Mil-

itary anthropometry data, for example was used to define the range of size

for the Jack model. Lee, Wei, Zhao, and Badler [88] use knowledge of human

strength limits and planning techniques to synthesize motions. Zhao, Tolani,

Ting, and Badler [150] describe the use of optimal control to simulate human

movements. An example includes getting set up to take a basketball shot.

Metaxas [101] uses control techniques together with dynamical simulation of

articulated figures to achieve motions like bending, shooting, reaching, and

ladder climbing.

Balance is a key issue for a standing figure. Eng, Winter, MacKinnon and

Patla [45] show how certain angles are coupled to maintain posture during

upper body motions, like far reaches and dips. Forssberg and Hirschfeld [50]

perform experiments which show some of the muscle control triggers at work to

maintain posture during a differently executed motions. Boulic and Thalmann

use information about the mass distribution of the articulated figure together

with traditional IK techniques to solve balancing problems in [23].

Arm movement

In his often-cited paper An Organizing Principle for a Class of Voluntary

Motions [71], Hogan proposed that some human motions can be modeled to

optimize for minimal jerk, i.e. minimized rate of change of acceleration. Hogan

34

and Flash [49] performed experiments to confirm this hypothesis. Hogan de-

scribed how the human joints can be modeled as spring-like objects [73] [74],

or systems which relate displacement to force in a possibly non-linear, pos-

sibly discontinuous, possibly non-energy-conservative manner. He shows how

muscle coordination can be modeled in this framework. Hogan uses feedback

control of a dynamical system to control motion in [72].

Mussa-Ivaldi, et. al. [107] structure different ik problems and the creature

performing them as a network. This network is used together with control

techniques to execute the ik problems in a biomechanically sound way.

Bizzi, et. al. [19] show that a system more complex than equilibrium

points (points where the joint’s two muscles exert equal force) must be present

for motor control. Mussa-Ivaldi, Hogan, and Bizzi [106] perform experiments

to measure the restoring forces for arms which have been displaced from equi-

librium point postures. Dean and Brüwer [38] describe the interaction between

arm positioning movement and the presence of obstacles and their relation to

the usage strategies for the joints.

siggraph was first introduced to the arm work mentioned in the last

several paragraphs by Koga, et. al. [80]. This biomechanical knowledge, to-

gether with a motion planner was used to simulate a chess game between a

human and robot player. Biomechanics aided the realism of the arm motions

during chess piece manipulation. An earlier paper by Rijpkema and Girard

proposed using a knowledge base of preferred human grasping methods [123].

They created a system for performing high-level grasping motions able to deal

with different cup sizes, handle styles, and the like. While not modeling un-

derlying processes, the system used knowledge of the human phenomena to

create convincing grasping motions.

35

Locomotion

J. Rose and Gamble’s Human Walking [125] is the definitive collection of arti-

cles describing the kinematics, dynamics, and pathologies of human walking.

The ideas presented there, most notably gait-cycle information, were used to

advantage by Bruderlin and Calvert [25] to generate one of the most com-

pelling controllable human walking systems. Similar work [24] handles human

running.

McGeer [98] [99] studied walking as a passive rather than active dynamical

system. He found that very little force is needed to keep a walk going once

started, making walking a very efficient form of locomotion, a important but

not surprising result. To show this, he built physical passive robots which

could walk with only the kinetic energy potential of an inclined surface to

keep them going.

Legged Robots that Balance [118] describes the work of Raibert, Hodgins,

and others in building physical robots together with control systems able to

locomote through hopping, jumping, and running. Hodgins and Raibert [69]

[119] continued this work using improved controllers to create parameterized

motion and robot gymnastics.

Jessica Hodgins’ group at Georgia Tech has been the most active one

in recent years trying to create dynamically simulated human motion, as was

demonstrated in their film Atlanta in Motion. Hodgins, et. al. [70] use control

schemes to simulate human sports motions like running, pole-vaulting, cycling,

and jumping, many of which were seen in the film. Efficiency is a major concern

for dynamic simulation. Carlson and Hodgins describe a system for using levels

of detail on the simulator to make maximal use of a system’s computing power

in [29].

One problem with dynamically simulated motion is the time required

36

to tune the controller for a particular body. If the body changes size, gender,

weight, or age, this can impact the effectiveness of the controller. Hodgins and

Pollard [68] interpolate over the space of control laws to facilitate a change in

skeleton. The control functions are parameterized by gains which are interpo-

lated for multiple skeletons. By interpolating the control, for an action such

as running, they can alter the physical characteristics continuously from child

to adult or from male to female.

Faure and Debunne use dynamic analysis of walking data to generate a

biomechanical model of walking. Using this, they can then synthesize con-

trollers to generate walks in [46].

Laszlo, van de Panne, and Fiume [86] describe the use of closed-loop

feedback control to simulate human walking. They also describe the use of

controller interpolation to yield some control over the resulting animations.

At the present time, biomechanically simulated motions are inferior in

quality to hand-designed animations. This is due to an inadequate under-

standing of the human body in motion, not to a defect in the goal of using

a first-principles approach to animation. As the biomechanics community

produces a richer understanding of human motion and groups like Hodgins’

capitalize on that to produce ever-better animation, the appeal of interpolated

and procedural animation may decline.

This is not to say interpolated methods are destined to become obsolete.

It is unclear, for example, how a first-principles approach would model classic

(and unrealistic) animation metaphors like squash and stretch. It may very

well be that cartoon dynamics is much less amenable to biomechanical know-

how than real dynamics. Interpolated methods like Verbs & Adverbs, however,

will continue to be useful even in the presence of dynamically incorrect motion.

37

Synergy-based IK and learning

Encoding knowledge of how much a particular joint contributes to a particular

kinematic task, a pairing known as a synergy, enables high quality inverse-

kinematics. This technique is not subject to the problems of biomechanical

implausibility associated with the other ik techniques detailed in Section 2.3.

Much of the groundwork for this technique was developed in the Princeton

Human Information Processing (hip) lab and robotics groups. The technique

has been considerably strengthened since and is currently being used by Katrix

Inc., for projects such as Ride the Comix (TM), a location-based game currently

at DisneyQuest (TM) in Orlando, Florida.

Motor synergies, collections of joint-gain pairs and neural-network learn-

ing were used to control Princeton’s planar, human-like robot, slim, by Lane,

Handelman, and Gelfand in [84]. Gelfand, et. al. [52] compare three different

learning schemes for a human-like robot performing reaching tasks. Gulla-

palli, et. al. [62] use synergies together with a control system, to learn how to

perform human-like motions such as position/force control during a sanding

motion.

Learning systems may take too long to converge for complex tasks, so

Handelman and Lane [65] propose using supervised learning, where a human

operator nudges the learning algorithm into the correct region of the search

space from which the automated learning system can then converge. Once this

is done, more specialized control systems can be employed.

Synnergy-based ik provides a good middle-ground between a purely kine-

matic system and a dynamic one. Dynamically correct looking behavior is

achieved without the expensive hit of a full dynamics simulator.

38

2.7 Procedural motion

Procedural animation uses code fragments to compute the dof values at a

particular time. The procedures can be as sophisticated as needed in order to

provide different motion styles or to react to different conditions of the simu-

lated environment. Unlike dynamic simulation, these procedures can be very

efficient, thus allowing for real-time performance on contemporary hardware.

The Jack (TM) system has many parts which are procedurally driven, as is

detailed in [7]. Phiilips and Badler [114] use inverse kinematics to effect near

real time manipulation of human motion. Properties like balance are derived

using procedural use of ik.

Blumberg and Galyean [20] use competing procedural behaviors to gen-

erate an agent capable of responding to real-time human stimulus.

Latombe’s Robot Motion Planning [87] describes different schemes for gen-

erating path plans. These plan procedures can be used to effectively navigate

a creature through an environment.

Perlin’s Improv system is probably the best known work depending pri-

marily upon procedurally generated animation. Perlin and Goldberg use pro-

cedural animation together with noise functions to yield controllable anima-

tions in [112] [113]. Perlin also uses blending to handle transitions between

different animations. Some of Perlin’s recent work in 2- and 3-D facial anima-

tion is detailed in [44].

Procedural animation can be used to model actions of groups as well as

invidual creatures. Reynolds [120] [122] [121] uses non-global interactions to

yield emergent behaviors like bird flocking. Musse and Thalmann describe a

model of collision detection schemes in group behavior, so the characters can

behave reasonably in a crowd situation in [108].

Cassel, et. al. [30] describe a system for generating conversations, in-

39

cluding gestures and facial expression changes keyed to the dialog using the

Jack (TM) system.

Unfortunately, writing animation routines is a task which will alienate

most animators, who are the people with the most talent for designing quality

motion. Additionally, motion capture is not well suited for use with the pro-

cedural approach, though Perlin’s noise functions can be used to augment the

realism of a motion captured sequence. With these two sources of high-quality

animation potentially denied it, procedural animation will not be a complete

solution.

Levels of control for procedural motion is a common theme. Tasks can

be broken into smaller, more tractable subtasks. Cohen describes a three-

level interaction scheme and a learning methodology in [34]. Thalmann and

Thalmann [95] describe a decomposition of an animation system into mcms, or

motion control methods. Badler [5] proposes a model, called a parameterized

action representation, for decomposing action and intends to build it upon

his patnet (parallel transition network) abstraction. Cremer, Kearney, and

Papelis describe hcsm, a framework for control in [36]. It uses hierarchical

finite state machines to control a driving simulator. Its framework, developed

by the operations community, may prove useful to the animation community.

Indeed, the commercial product Motivate (TM) made by The Motion Factory

uses a hierarchical finite state machine approach to control and simulation.

2.8 Interpolated motion

The final classification of parameterized animation is interpolated animation,

the class into which Verbs & Adverbs fits. Interpolated motions are constructed

by blending between and extrapolating from pieces of motion source, either

hand crafted or motion captured. The idea of altering existing animation to

40

produce different characteristics is not new. Unuma et al. [140] use Fourier

techniques to interpolate and extrapolate motion data. Amaya et al. [2] alter

existing animation by extracting an “emotional transform” from example mo-

tions which is then applied to other motions. For example, “anger” from an

angry walk is applied to a run to generate an “angry” run. Verbs & Adverbs

does not follow this approach in that it does not apply characteristics of one

motion to another, but instead assumes that the initial library of motions con-

tains these emotions. Unlike these two techniques, Verbs & Adverbs method is

not based in the frequency domain and thus can handle non-periodic motions

which earlier methods fail to capture.

Bruderlin and Williams [26] use multitarget interpolation with dynamic

timewarping to blend between motions, and displacement mappings to alter

motions such as grasps. Witkin and Popović [148] present a similar system

for editing motion capture clips. The former work is in the same spirit as

ours, and addresses many of the same difficulties, specifically the necessity of

selecting appropriate key times for interpolation and the consequent need for

time warping. One difference between the two approaches lies in the choice

of interpolation techniques: Bruderlin and Williams use multiresolution filter-

ing of joint angles in the frequency domain, whereas our technique decouples

solution representation from interpolation mechanism.

Both Wiley and Hahn [144] and Guo and Robergé [63] produce new mo-

tions using linear interpolation on a set of example motions. Both techniques

require O(2d) examples, where d is the dimensionality of the control space.

The Verbs & Adverbs technique using radial B-splines requires O(n) examples

to establish the baseline approximation and O(n3) to compute the resulting

answer. To compare, a Delaunay triangulation of the data would require

O(nceil(d/2)) to compute, when d ≥ 3.

41

The Verbs & Adverbs system also differs from the work of Wiley and Hahn

by using non-uniform time-scaling based on key events. While the uniform

time-scaling of Wiley and Hahn obviates the need for an animator to select

structurally similar poses during motions, it assumed that the repertoire of

motions being interpolated between must be very similar in time. When this

assumption is violated, oddities in the motion can result. Wiley and Hahn

also reparameterize and sample their motions on a multidimensional grid and

then perform simple interpolations at runtime. This requires computation and

storage exponential in the number of parameters.

Additionally, neither Wiley and Hahn nor Guo and Robergé discuss the

blending of subsets of examples, which would arise when new examples are

placed “between” old examples as a designer refines the interpolated motion

space. Our technique, on the other hand, is refined by more examples as

required. As Verbs & Adverbs uses an approximation method based upon

radial B-splines with compact support to perform the interpolation, examples

have limited effect over the space of animations, thus ensuring that subsets of

the examples are used at runtime as appropriate.

An important distinction in Verbs & Adverbs is that the interpolation is

performed simultaneously in real-time over multiple dimensions, such as emo-

tional content and physical characteristics. Although we apply the techniques

to interpolating trajectories characterized by coefficients of spline curves, the

methods presented here are also applicable to coefficients in the Fourier and

other domains. It may also be possible to apply similar ideas to control the

parameters of a physically based model.

In the context of autonomous agents, Verbs & Adverbs presents a back-

end for applications such as games, the Improv [113] system, and the work

proposed by Blumberg and Galyean [20]. The high level control structures

42

Pro Con

Spacetime Stateless Mocap and hand animation difficult to reuse

dynamics Physical interaction with environment Lack of biomechanics limits human realism

Slow (relatively)

Dynamics Deep understanding of motion Mocap and hand animation difficult to reuse

and Physical interaction with environment Must maintain state

controller Controllers difficult to design

Slow

Procedural High level parameterization Mocap and hand animation difficult to reuse

animation Stateless or stated Realism dependent upon procedures

efficient

Interpolated High level parameterization Potentially loose parameterization

animation Stateless Realism dependent upon source material

efficient

Table 2.2: Strengths and weaknesses of controllable animation techniques

found in such applications are capable of selecting verbs and adverbs while the

work we present here provides the low level animation itself. Thus, we create

the motion in real-time for “directable” creatures as discussed by Blumberg

and Galyean.

2.9 Conclusions

Each of the four major parameterized animation techniques has strengths and

weaknesses. Table 2.2 illustrates this for each of the four styles of animation

studied here. Given this context of human figure animation, the Verbs &

Adverbs system can be well described. It is an interpolated technique and as

such needs one thing before all others: example motions. That is the subject

of the next chapter.

[21] [64] [77] [103] [117] [3] [126]

43

Chapter 3

Acquisition of examples

The most compelling animations in the 2- or 3-D realm are done using time

tested hand animation techniques augmented with computer assistance. The

computer, for the main part, is used simply for process enhancement, not

process reengineering. Motion capture for animation grew out of the biomech-

anist’s desire to track human motion in order to better understand its form.

Hardly a panacea, motion capture for animation is expensive and time con-

suming. Its ability to create “realistic” motions, however, can make it worth

the effort.

Procedural and dynamically simulated animations, like the work of Per-

lin [112] [113], Badler [7], and Hodgins [69] [119] [70] [68], have an advantage

over key-framed or motion-captured animations in that they are controllable

at run-time and can therefore be interactive. Unfortunately, these techniques

require an animator to express their vision in a way quite alien to their train-

ing. As was mentioned earlier, this dissertation details a method, called Verbs

& Adverbs, for creating controllable motion from motion capture segments or

hand-crafted 3D animation clips. This allows animators to continue working in

a way comfortable to them and leverages the effectiveness of expensive motion

capture data. Before the Verbs & Adverbs technique can be applied, however,

the designer must first obtain a set of good examples.

44

In this chapter, the example is examined. An example is an animation

clip in a particular form. A set of not overly strict requirements must be met

for a motion segment to be considered an example. Motion capture processing

is examined in the context of these requirements. A motion formalism is

introduced and a number of example-related topics are explored. A motion

editing system can be built using this formalism to assist the designer in the

construction of examples.

3.1 What is a motion-snippet?

In traditional animation, sequences are created with the goal of making scenes

and later, films. Interactive animation systems typically use a smaller unit of

animation, a self-contained sequence which could be called a motion snippet.

Examples of snippets would include punch, fall, reach, or a walk-cycle. Inter-

active systems involve ways to mix and match these snippets to form seamless,

reactive animation sequences.

Rich, parameterized snippets, verbs, form the basic unit from which a

controllable interactive system is built. Verb construction is the primary thrust

of this chapter and the next. Verb construction requires structured, rather

than random, motion snippets, i.e. good examples.

The skeleton, together with values for its degrees of freedom, defines a

static pose of the character. A motion is a changing over time of pose. In

procedural terms, a motion M is a function in the time domain which returns

a set of degree of freedom values.

Take, for example, a basic walk. Figure 3.1 shows a skeleton, this one

affectionately named George. George has 44 dofs: 6 root dofs and 38 internal

revolute dofs. Figure 3.2 shows a pair of dof curves for a basic walking

motion designed for the George skeleton, namely those of the knees. Note the

45

Figure 3.1: George

Figure 3.2: Knee dofs for a walk

46

Figure 3.3: A simple walking motion

out of phase similarity of the curves, consistent with a biomechanical analysis

of the human walk cycle [125]. Figure 3.3 shows a time-lapse picture of this

walking motion.

3.2 The skeleton’s DOF ordering

The hierarchy of George’s dofs is shown in Figure 3.4. Of particular interest is

the ordering of the first six dofs that define the position and orientation of the

root relative to the global frame of reference. As the multiplication of rotation

matrices is not commutative, achieving the same global effect with different

orderings requires different sets of values. The choice of this order will affect

many of the algorithms presented in this chapter and of those in Chapter 5.

The order used in this work is the X, Y, and Z translations, followed by the

Y, Z, and X rotations. The algorithms presented in this dissertation will be

described in terms of this ordering.

The Y axis, in computer graphics, is typically the one pointing “up” from

47

Frame in which
George is located

Root
Xt, Yt, Zt, Yr, Zr, Xr

Torso
Xr, Yr, Zr

Neck
Xr, Yr, Zr

Head
Zr, Yr

R. Hip
Xr, Yr, Zr

R. Knee
Xr

R. Ankle
Zr, Xr

L. Hip
Xr, Yr, Zr

L. Knee
Xr

L. Ankle
Zr, Xr

R. Collar
Yr, Zr

R. Shoulder
Xr, Yr, Zr

R. Elbow
Xr, Yr

R. Wrist
Xr, Zr

L. Collar
Yr, Zr

L. Shoulder
Xr, Yr, Zr

L. Elbow
Xr, Yr

L. Wrist
Xr, Zr

Figure 3.4: The skeleton hierarchy

the ground plane. Thus, motions for a biped where the character is standing,

walking, or running, having the Y axis rotation first allows easy orienting of

the direction of the character. The initial dof order is shown in Figure 3.5.

This dof will hereafter be referred to as the character’s heading.

3.3 Motion’s relation to the skeleton

The skeleton is like a marionette with many strings to pull, those being the

degrees of freedom. Keyframing and motion capture, two techniques for de-

signing simple animation segments, were described in Sections 2.2 and 2.4.

Animations of this form have some advantages over procedural animations;

they easily leverage the talents of an animator or physical actor. One dis-

advantage, however, is their close connection to the skeleton for which they

were designed. A motion, when applied to a skeleton for which it was not

designed, is likely to produce unacceptable results. Most often this becomes

evident with visually obvious violations of kinematic constraints, such as foot

slide. Foot slide is when the foot moves globally when it should logically be

supporting the weight of the character– planted solidly upon the virtual floor.

Figure 3.6 shows the problems caused by switching the skeleton’s pro-

portions and then applying an unmodified motion to it. The picture on the

48

Figure 3.5: The initial DOF ordering

Figure 3.6: Different skeleton results in foot slide

49

left shows the walk as it was meant to appear. Notice the stability of the

foot placement during the support phases of the walk cycle. With a smaller

skeleton, the motion’s once solid support phases are replaced by skidding.

Gleicher [55] [56] has studied this problem extensively and has developed fast

methods for fixing such problems based on spacetime constraints.

3.4 Time

Time is a simple notion in the day-to-day sense. Animation systems, however,

often require a more sophisticated treatment of time, separating “time” into

different types. Verbs & Adverbs uses four different kinds of time.

The most general form of time, clock-time, is the common-sense notion of

time. For this dissertation, clock time can be considered to have begun a long

time ago, at −∞, and will continue indefinitely towards +∞. 0 can be placed

at any arbitrary moment. How about now? Clock-time will not often be used

in this dissertation, but when it is, the symbol T will be used.

Animation-time is the first major time used here and is the most closely

related to clock-time. In general, animation time ranges over a finite region of

the clock-time timeline and will be denoted by τ . An animation can be placed

in time to play at any region of the animation-time timeline. Two special

animation-times τ s and τ e mark the start and end times of the animation.

It is different from clock time in that clock time is assumed to have a global

calibration, i.e. everybody knows what time it is.

Verb-time, T , always starts at 0 and ends at T d, the duration of the anima-

tion. Verb-time is used to normalize animations on the timeline; no shortening

or lengthening of the animation’s duration takes place. T d, therefore, is equal

to τ e − τ s.

So far, all the time types have been roughly equivalent up to an offset

50

t

T

K1 K2 K3 K4

1.00.0

T1

T()t2

Td

t()T1
t2

Figure 3.7: Connection between canonical-time, t, and verb-time, T

in clock-time. Canonical-time, t, is different and has domain and range from

[0 . . . 1] always. Canonical time is extremely important to this dissertation

as it is used to time the structural elements of a motion. A walk motion, for

example, could be described by events like heel-strike, toe-off, swing-phase, etc.

An extensive overview of the structure of human walking is found in [125].

These structural milestones are defined by a set of user-specified key-times.

All motions have two implied key-times at 0 and T d, thus tying the verb-time

and canonical-time timelines together. If the motion has no other key-times,

canonical time acts as percentage time, thus

T = t · T d.

In the presence of three or more key-times, however, the mapping is more

complex. Figure 3.7 depicts the mapping for a motion with four key-times

(two implied and 2 user-specified). Given a verb-time T , we can project that

into the canonical timeline using the equation

t(T) =

(
(m− 1) +

T −Km

Km+1 −Km

)
1

NumKeyTimes − 1
(3.1)

for the largest m such that T > Km and keeping in mind that t(0) = 0. In

other words, at each key-time m, t(Km) = m−1
NumKeyTimes−1

. For instance, at the

51

third of four key-times, t(K3) = 2
3

as the key-times will fall at 0, 1
3
, 2

3
, and 1.

Between key-times, t is linearly interpolated.

Given a moment in canonical time, t, we can calculate the associated T

by linearly interpolating from the key-times between which a particular t falls:

T (t) = Km +

(
t− t(Km)

t(Km+1)− t(Km)
· (Km+1 −Km)

)
(3.2)

where t is in the range [t(Km) . . . t(Km+1)) and keeping in mind that

T (1) = Td
i = KNumKeyTimes .

The symbols “τ”, “T”, and “t” are used interchangeably to indicate value

and projection from one kind of time to another. “T”, for example, stands for

a particular verb-time. T (t) is the projection of the canonical time t to the

verb-time timeline. While this may seem to clash, it helps to minimize the

number of symbols used in this dissertation, a goal which will become clearly

important as this chapter continues.

3.5 What makes a good example?

As will be shown in Chapter 4, interpolation is at the core of the Verbs &

Adverbs system. Interpolation imposes a number of constraints on the example

motions to be interpolated. These include:

1. similar motion structure,

2. same skeleton,

3. continuous dof-curves,

4. anatomically-plausible use of joint angles,

5. similar use of joint angles for similar motions, and

52

Figure 3.8: Different walking styles

6. same initial placement and heading at the beginning of the example.

7. in canonical timeline

8. identical dof function encoding schemes

Many of the functions for motion editing to be described in Section 3.9 can be

used to prepare an example from raw motion data.

Structural similarity

Of primary importance is the structural similarity requirement. Creating a

controlled walk, for example, requires a repertoire of walks exhibiting various

desired walking styles. These walks all need to start and end at the same

points in the walking-cycle. Likewise, the actor needs to swing his or her arms

in a consistent off-phase behavior, and not perform any spurious motions,

like a head-scratch, fidget, or angry fist raised against the world. Within

this restriction, a great variety of motions is found, as shown in Figure 3.8.

Figure 3.9 shows to structurally dissimilar walks.

53

Figure 3.9: Two walks not displaying structural similarity

As was discussed in Section 3.4, motions have a set of key-times, instants

when important milestones take place. All motions to be combined to form a

verb must have the same set of key-times in the same order. Given this key-

time information, all the examples can be put in the same canonical timeframe,

ensuring interpolation of corresponding instants in each of the motions. Anno-

tation of key-times and other structural constraints will be further described

in Sections 4.2 and 4.4.

Same skeleton

As was discussed in Section 3.3, applying a motion to a skeleton for which it

was not designed leads to unpredictable results. As all of the examples are

going to be applied to one skeleton in the interpolation step, the examples need

to be designed for the same skeleton. Using the techniques of the previously

54

mentioned section, however, can help a designer transform a set of motions for

differing skeletons into a set for one.

Continuous DOF-curves

dof-curves are required to be continuous. Often basic motion capture is de-

livered as a collection of poses, each representing a discrete moment in time

when the motion was captured and analyzed. Since human figures are highly

redundant systems and given the incomplete knowledge of the human musculo-

skeletal system and its flexibility range [21], there is no guarantee that the joint

angles will be continuous from frame to frame even for slow deliberate motions

with little change from one frame to the next.

This is an issue since the Verbs & Adverbs system samples the dof-curves

at times other than the frame times. This is not itself a fundamental problem–

we could use a piecewise-constant representation. Non-continuous curves, how-

ever, are often associated with non-similar curves for similar motion. This

restriction will be described shortly. For this reason, the desire to sample the

curves off the frame times, and the desire to use curve representations other

than piecewise-constant, dof-curve continuity is required.

Section 3.7 describes how motion capture data analysis can be performed

in order to ensure continuous dof curves.

Anatomical plausibility

A degree of freedom for our skeleton is an approximation of some motion which

a human can perform. Given that, the dof must be set in a manner consistent

with a human’s abilities.

For example, take the wrist curling motion, shown in Figure 3.10. The

extent of the allowable curl is bounded by θmin & θmax. Anatomically plausible

55

Θmin

Θ0

Θmax

Y

Z

Figure 3.10: Wrist curl extent

settings of this dof fall between those two extents.

This model of plausibility is a simplification. The “real” values of θmin

& θmax are not static, but are functions of other dofs at the same body site,

such as the wrist bend about the Y axis, or of motions at other parts of the

body. This too is a simplification in that it does not handle self-intersection

with the body or the fact that the human body is only approximated by a

hierarchical collection of rigid limbs connected by rotary joints.

Why, therefore, is this simplified model being used? The biomechanics

community has yet to furnish a complete kinematic model of the human form.

When and if they do, it is not clear that it will be low dimensional enough to

be of practical use to animators or in motion capture analysis. The shoulder

complex, for example, was studied by Maurel, et. al., [97], and had 18 dofs

per arm and shoulder, an impractically large number for many animation

purposes. Simplified models have been the most useful ones for the animation

community to date.

56

Figure 3.11: A medium reach

Similar use of joint angles

Redundant manipulators (redundant kinematic figures) can be posed in a glob-

ally unique configuration using a potentially infinite number of dof settings.

Verbs & Adverbs requires that dof values be similar for similar global config-

urations. Motion capture analysis can be done in a way which supports this.

The technique will be detailed later in Section 3.7.

Figure 3.13 shows two sets of shoulder curves for two different reaching

motions shown in Figures 3.11 and 3.12. The curves were generated using a

basic motion capture analysis technique. Note that both sets pass the (admit-

tedly liberal) plausibility test. As they are different motions, they should have

differing curves, but it is reasonable to assume that if the motions are simi-

lar overall, then their dof-curves should be somewhat comparable. Blending

these two motions yields the strange result shown in Figure 3.15.

Using the motion capture method to be detailed in Section 3.7 yields

57

Figure 3.12: A low reach

Figure 3.13: Dissimilar use of joint angles

58

Figure 3.14: Similar use of joint angles

Figure 3.15: Poor motion blend due to dissimilar DOF curves

59

Figure 3.16: Good motion blend with similar DOF curves

consistent use of joint angles, as shown in Figure 3.14. These result in the

exact same reaching motions shown in Figures 3.11 and 3.12. When blended,

the result is much more reasonable, as shown in Figure 3.16.

Placement and heading at t = 0

The initial placement and heading requirement holds that all motions begin

at the same [X,Z] location in space oriented along the same heading. That is,

at t = 0, the first, third, and fourth dofs of each example must match.

A useful side product of the initial dof ordering introduced in Section 3.2

is the ability to reorient and reposition the character using a simple algorithm.

Thus, any motion can be put into the proper form to satisfy the placement

and heading requirement.

Assume that all the examples for a verb are to start at [x, z] = [0, 0] and

heading along the positive Z axis, i.e. the global Y rotation is 0. Usually, the

clips start at an arbitrary location and head off in an arbitrary direction. This

is shown as motion M in Figure 3.17. To be useful as an example, M must be

60

Z

X

M

M’

Figure 3.17: Reorienting the character

transformed into M’. The method is shown by the following algorithm:

Algorithm 3.1 Steps to reorient

for each frame i

{
Ŷr

i = Yr
i − Yr

0

X̂t
i = cos(−Yr

0)(X
t
i − Xt

0) + sin(−Yr
0)(Z

t
i − Zt

0)

Ẑt
i = − sin(−Yr

0)(X
t
i − Xt

0) + cos(−Yr
0)(Z

t
i − Zt

0)

}

A “t” superscript indicates a translational dof and an “r” a revolute

one. Xt, Zt, and Yr are arrays of the first, second, and fourth dof values for

each frame of M. X̂t, Ẑt, and Ŷr are the adjusted dof values corresponding

to motion M’. The algorithm adjusts each frame by translating so that the

initial frame is at [0, 0] and rotating by the negative of the initial heading, thus

ensuring that the initial heading is 0. A simple extension of this algorithm can

reposition a motion so that at time T = 0 it is in a certain position heading

61

in a certain direction. This is shown in the following algorithm:

Algorithm 3.2 General reorient and reposition

1 Given X̂t
0, Ŷ

t
0, Ẑ

t
0, Ŷ

r
0,

2 Xt
0,Y

t
0,Z

t
0,Y

r
0,

3 Xt
T ,Yt

T ,Zt
T ,Yr

T, construct X̂t
T , Ŷt

T , Ẑt
T , Ŷr

T

4

5 ∆Xt = Xt
T − Xt

0

6 ∆Zt = Zt
T − Zt

0

7

8 ∆Yt = Ŷt
0 − Yt

0

9 ∆Yr = Ŷr
0 − Yr

0

10

11 X̂t
T = cos(−∆Yr)∆Xt + sin(−∆Yr)∆Zt + X̂t

0

12 Ẑt
T = − sin(−∆Yr)∆Xt + cos(−∆Yr)∆Zt + Ẑt

0

13

14 Ŷt
T = Yt

T + ∆Yt

15 Ŷr
T = Yr

T + ∆Yr

The X̂t
0, Ŷ

t
0, Ẑ

t
0, and Ŷr

0 terms indicate the desired start time state of the

character. The Xt
0,Y

t
0,Z

t
0, and Yr

0 terms contain the actual start time state

of the character. The natural state for time T is contained in the Xt
T ,Yt

T ,Zt
T ,

and Yr
T terms. The Y translation is unaffected by the rotation about the

Y-axis. The Yr dof will be rotated to maintain the illusion that the motion

started heading off in the direction Ŷr
0, when in reality it started off with the

heading Yr
0. The X and Z translations are shifted and rotated to keep the

motion consistent with the desired initial configuration. This algorithm will

62

often be used in the remainder of this dissertation to line up motions one after

another.

A question to ask is whether an alternate handling of the root would

render the reprojection details moot. A velocity based approach would be to

store some or all of the initial dofs as velocity curves, rather than positional

curves, and then integrate the values to yield the final result. One such initial

ordering is Ẋt, Ẏt, Żt, Ẏr, Żr, Ẋr. A simple integration from one time to the

next would yield the appropriate changes in positioning the skeleton, handling

all of the work done by the reprojection. Unfortunately, this method has two

serious drawbacks which make it unappealing as a solution. First, integration

is expensive. Integration by Gaussian quadrature, for example, must sample

the curves at a number of distinct times in order to build up a reliable answer.

The longer the time, the more samples needed for reasonable confidence in the

solution.

The primary fault with this method is not efficiency, however, but accu-

racy. Unless the integration is performed from the beginning of time for each

frame, some information gathered in one frame will be used to calculate the

next frame and this leaves open the possibility of compounding error. For

example, buildup of error for the Zr rotation could cause the character to

spin off its feet and onto its head. Only favorable luck would keep this from

happening.

Keeping a subset of the initial dofs as velocity curves and some as position

curves can make for a useful hybrid approach. Such an approach might have

an initial ordering of Ẋt, Yt, Żt, Ẏr, Zr, Xr. Buildup of error can appear in

the X and Z translation, as well as the Y rotation component of the root’s

motion. The character is moving in the X-Z plane and rotating about the

Y axis as it turns, i.e. these values are typically unbounded. Such errors,

63

which are likely to be small from any given frame to the next, will likely go

unnoticed. This hybrid scheme would probably be a good initial configuration

and is worthy of use. It was not used as the scheme for the Verbs & Adverbs

system as described in this dissertation, however, and will not be discussed

further.

3.6 Hand-designed examples

The Verbs & Adverbs system currently accepts both hand-animated and motion-

captured examples. In Chapter 2, keyframing, the process that animators use

to make 3D animations, was overviewed. Making examples using keyframing

systems like SoftImage (TM) and 3D-Studio/Max (TM) requires placing a few re-

strictions upon the animator in order to satisfy the example criteria introduced

earlier in this chapter. Currently, Verbs & Adverbs has been set up to work

with SoftImage (TM).

At the current time, Verbs & Adverbs requires one skeleton per verb,

i.e. one skeleton per set of examples. Some traditional animation metaphors,

like squash and stretch, therefore, cannot be used as they alter the size of

the skeleton. One goal of our current research is to remove this restriction

to enable the design of cartoonish verbs. The animator must also make sure

to maintain the structural similarity of the examples. A confused walking

motion, for instance, cannot convey its confusion with a head scratch, but

must rather convey emotion using timing and posture only. The rest of the

example restrictions can be satisfied automatically and are things with which

the animator need not be concerned.

64

Figure 3.18: Placement of sensors for motion capture analysis

3.7 Motion captured examples

A more complete description of our motion capture process was detailed at

Eurographics Workshop on Computer Animation and Simulation 1997 in The

Process of Motion Capture: Dealing with the Data [21].

Most of the data used in this dissertation was motion captured. Our

motion capture data was generated from an Ascension MotionStar (TM) system

input directly into a 3D modeling and animation program, SoftImage (TM), at

capture time. Data is was sampled at 144Hz. This high sampling rate is

advisable when fast motions, such as sports motions, are captured; using slower

sampling rates for such motions can often produce problems in the inverse

kinematics phase, since there is less frame-to-frame coherence. Actors are

suited using from 13 to 18 six-dof sensors, the typical locations of which are

shown in Figure 3.18. Statistical analysis is used to ignore gross errors and

outlying data in the skeleton generation and inverse-kinematic phases of the

analysis process.

65

Given a motion capture dataset, the goal is to construct an articulated,

hierarchical rigid body model. The George skeleton (Figure 3.1) is the topology

used, though it must sized to fit different motion capture actors. The first task

is to extract the best limb lengths from the motion capture data. Once the scale

of the segments is determined, an inverse-kinematics solution is calculated to

determine the joint angles for the figure. Our inverse-kinematics routine uses

penalty functions to constrain the joint angles to approximate a human’s range

of motion.

Motion capture data is noisy and often contains gross errors. The source

of the noise is primarily the magnetic sensors themselves, although we note

that in our experience optical data is as noisy. The size of the skeleton is deter-

mined by finding the distances of the translated joint locations over a motion

or repertoire of motions. Using the simple arithmetic mean to compute these

distances results in answers distorted by a few gross errors. Unfortunately,

editing the data by hand to remove outliers is impractical. As an example,

gross errors in fast motions such as throwing may, for a frame or two, give a

distance between the elbow and wrist of over three meters. A robust statistical

procedure, such as described in [64], can be used to remove the outliers result-

ing in accurate measurements of the skeleton. Outliers can also be tagged and

then ignored in the inverse-kinematic stage of the analysis.

Fitting the cleaned data to the skeleton

Once the hierarchical model has been determined using robust statistical anal-

ysis, each frame of data must be analyzed to produce a set of joint angles. To

obey the example criteria, the resulting dof curves must make consistent use

of dofs across multiple motions and must be continuous. A piecewise-linear or

B-spline representation of the dof is used. Care is taken to insure that these

66

curves contain no extreme accelerations between frames. In contrast, many

commercial data sets often contain discontinuities in the rotational data from

frame to frame which makes off-frame sampling impossible without represent-

ing the joints as quaternions and using quaternion interpolation, as described

in Shoemake [129].

The data sets yield information about many areas of the body, giving us

a highly constrained kinematic problem. As mentioned in Section 2.3, such

problems can be solved using a non-linear optimization technique which seeks

to minimize the deviation between the recorded data and the hierarchical

model. A modification to the technique presented in Zhao and Badler [150] is

used.

Recall that Zhao’s fitness function to minimize is defined as

F (Θ) =
∑
j∈J

wpj
(Pj(Θ)− P̂j)

2+

wO0,j
(O0,j(Θ)− Ô0,j)

2+

wO1,j
(Θ)− Ô1,j)

2+

wcC
2
j

(3.3)

where Θ is the set of joint angles for the set of joints J , Pj(Θ) the global

location of the jth joint given Θ and P̂j the recorded joint position from the

capture phase. O0,j(Θ) and O1,j(Θ) are two vectors defining the global ori-

entation of the joint with Ô0,j and Ô1,j being the recorded orientations. Two

vectors are used, as, together with their cross product, they will form a coor-

dinate system. The quantities wpj
, wO0,j

, and wO1,j
are scalar weights which

can be tuned on a dof by dof basis to achieve better results. Additionally,

we employ a joint angle constraint term, Cj, in the form of a penalty function.

Joint angle constraints for humans have been measured and can be found in

the biomechanical literature, such as in Houy [77]. Cj is calculated as the

67

distance of Θj from the range [Θjmin
. . . Θjmax].

The quasi-Newton bfgs optimization technique [53] is used to solve the

system and uses the gradient of the fitness function, given by

∂Fj

∂Θi

=2wpj
(Pj(Θ)− P̂j)(uj × dji)+

2wO0(O0,j − Ô0,j)(uj ×O0,j)+

2wO1(O1,j − Ô1,j)(uj ×O1,j)+

2wcCj

(3.4)

where uj is the effective axis of rotation about the jth dof in global terms

and dji the vector from the jth dof to the ith dof. If the data is relatively

non-noisy and the skeleton is well formed, this technique will work well. It

can produce poor results if these conditions are not present. Robust statistics

helps to insure these conditions by making the best skeleton and by marking

data points which are considered outliers. Since a hierarchical description

of a skeleton is a biological simplification and since non-linear optimization

does not guarantee finding a global minimum, this analysis can still fall into

an insufficient local minimum if the starting guess for the optimization is far

from the desired solution.

If we assume a good starting guess for the first frame, then a good IK

solution for that frame will very likely be found by Zhao and Badler’s min-

imization. As the sampling rate on the motion capture system is high, the

pose from one frame to the next will not change much. The solution for one

frame, therefore, provides an excellent starting guess for the next frame. For

many motions, this technique works admirably. It suffers if the data and the

skeleton are mismatched near where the skeleton goes through a singularity or

where the data points are too far apart in time for a given motion’s velocity.

Additionally, it will suffer if it never converges to a good solution for an initial

frame. Over the shoulder reaching, fast motions, and motions where the arm

68

Figure 3.19: Fitting motion capture data to the skeleton

is extended to its limit are examples. If this happens, the solution can jump

over to another local minimum and stay there. This behavior is not desirable,

as it will likely break the dof consistency requirement of examples.

Analyzing a walk motion of 6.7 seconds duration at 30 frames per second

required 306 seconds on a Pentium 133 machine with 4389 bfgs iterations for

satisfactory convergence of the solution. A selected frame showing the fit of

the skeleton (yellow) to the data (black) is shown in Figure 3.19. Notice that

the fit is extremely good and shows only a slight discrepancy in the left arm.

The resulting walk motion is shown in Figure 3.20.

Bootstrapping

A further refinement of the motion capture analysis presented here is to use

motions to bootstrap one another by providing good starting guesses to the

bfgs optimization. The assumption for this technique is that many motions of

similar structure are to be analyzed, i.e. a set of examples, and that motions

of similar structure will have relatively similar dof curves. Such data sets

might include reaches, runs, walks, etc.

69

Figure 3.20: Walk motion from motion capture data

Assume that there is a motion M, a set of dof curves, for a motion in a

set of examples. If we have a motion capture dataset for a structurally similar

motion (Section 3.5), the joint angles will be similar to those for motion M.

The main difference between the solution for the new desired motion M̃ and

M will be a time warping to account for differences in the phrasing (relative

timing) between M and the captured data. Thus a scaling in time on the data

sets is needed. We mark a set of correspondence times, key-times (Section 3.4),

in M, and in the data set. We time-warp M and then use that as the starting

guess for the inverse kinematics optimization described earlier. Section 3.9

describes piecewise-linear time-warping and Chapter 4 describes the use of

key-times in depth.

Thus, this technique will not propagate errors, whereas in the previous

technique a bad starting guess may result in a bad solution, which can prop-

agate from frame to frame. Near singular conditions can also cause the pre-

vious technique to jump from one local minimum to another, which is then

70

propagated to all the remaining frames. With this technique, similar mo-

tions will make similar use of their joint angles when analyzed, which is

key for using motion capture for a set of examples or for a technique like

Witkin and Popović [148]. Note that this technique requires operator inter-

vention to mark the key times, and thus it is only employed for groups of

data-sets when the previous technique did not work.

The details of the Verbs & Adverbs interpolation will not be described

until the next chapter, but in short, dof values are generated through in-

terpolating (blending) between multiple example motions. Section 3.5 stated

that examples must make similar use of dofs for similar motions. Why is

this?

dofs for the two reaching motions from the naive motion capture analysis

were shown in Figure 3.13. Note that the curves are quite different even though

they achieve a similar global effect. Figure 3.15 showed an unsuccessful blend

between the two motions. The motions did not analyze reasonably due to

noise in the sensors and inadequacies of the skeletal model and the joint angle

constraints model. Using the medium reach motion as a reference motion and

a time-warp to align it as the starting guess, we can obtain a more consistent

use of shoulder angles, as shown in Figure 3.14. Notice that, up to a time

warp, these sets of shoulder angles are very similar. Figure 3.16 showed a

simple blend which yielded reasonable results.

3.8 The motion formalism

Early in this chapter, the motion was introduced. Motions, denoted by the

symbol “M”, were defined to be short, finite-duration animations. Later sec-

tions introduced the three varieties of time (Section 3.4) and detailed a special

class of motions called examples– motions which obey a set of restrictions

71

(Section 3.5). Mi refered to the ith example in a set. In more abstract terms,

however, Mi is just a particular motion. Mi′ , therefore, would refer to a

different motion.

What do these two motions have in common? They may be encoded using

different dof curve representations, for example. Each would have a set of

dof curves. As will be seen later in this section, they may be even less closely

related than that. What all motions share is the ability to answer a common

set of questions or, in other words, all motions share a common interface. This

interface is called the motion formalism. The remainder of this chapter will

detail this formalism and describe a set of concrete objects that implement

it. This formalism will tie together the notions of dof-functions, time, and a

number of other ancillary values like key-times.

Motions were defined to contain a number of data items, such as key-times

and inverse-kinematic constraints. More formally, a motion is an entity which

can respond to a number of questions and which can produce a number of val-

ues. Table 3.1 details the simple values a motion needs to be able to produce.

To take an example, Td
i is the duration of the ith motion in terms of verb-time.

Subscripts i will indicate motion and j dof. Superscripts will differentiate be-

tween different values of the same type, such as τ s
i for animation-time start

and τ e
i for animation-time end.

As was introduced in Section 3.4, the three types of time which must

be considered are animation-time, verb-time, and canonical time. Motions,

therefore, must be able to project time from one type to another. As stated

previously, the symbols “τ”, “T”, and “t” are used both in functional and

non-functional forms. τ(T), for instance, will project the verb-time T into the

animation-timeline while τ alone simply indicates a particular animation-time.

τi(T) indicates the projection of the verb-time T into the animation-timeline

72

data-item values description

Kim [0 . . . +∞) mth key-time for motion Mi

τ s
i (−∞ . . . +∞) start-time of motion Mi

τ e
i (−∞ . . . +∞) end-time of motion Mi

Td
i [0 . . . +∞) duration of motion Mi

pi <NumAdverbs adverb values for motion Mi

Table 3.1: Basic motion values: key-times, time-bounds, duration, and adverbs

for motion Mi.

θ is the dof position function for a motion, which takes verb-time as

a parameter. θij(T), therefore, would return the value for the jth dof for

the ith motion at verb-time T . Likewise, the dof velocity and acceleration

functions are indicated by θ̇ij and θ̈ij. Script-I, I, is used to indicate the

active constraints placed upon a motion at particular time. Script-D, D, is

used to indicate the dof-usage for the dofs at a particular time, as will

be described in Section 3.9 under the sub-heading “composition”. Table 3.2

indicates the different functions supported by the motion formalism, their

parameters, results, and meanings.

Unless otherwise indicated, the duration of a motion Mi is calculated

simply as

Td
i = τ e

i − τ s
i .

Likewise, the functions Ti(t) and ti(T) are functions of key-times and can be

calculated by using Equations 3.1 and 3.2 unless otherwise indicated.

The motion-formalism is an abstraction and such abstractions beckon to

computer scientists to define many concrete implementations, this being the

core idea of object oriented programming. This idea was used effectively in

the Verbs & Adverbs system. In Section 3.9, some other kinds of objects

73

function result range description

τi(T) τ (−∞ . . . +∞) verb-time to animation-time

Ti(t) T [0 . . . +∞) canonical-time to verb-time

ti(T) t [0 . . . 1] verb-time to canonical-time

θij(T) position < return dof position

θ̇ij(T) velocity < return dof velocitie

θ̈ij(T) acceleration < return dof acceleration

Dij(T) dof-usage {required, return dof-usage

defined on a dof-by-dof basis

undefined}
Ii(T) constraints ik constraints active at T

Table 3.2: Motion functions: time projections and kinematic operators

supporting the formalism will be introduced. In Chapter 4, verb construction

will be detailed. Verbs, not surprisingly, will been shown to be simply another

object supporting the motion formalism.

Since some key concepts are introduced at different times, the motion

formalism grows as this dissertation progresses. The full motion-formalism

and all of its different concrete implementations is detailed in Appendix A for

easy reference.

Basic motions

So far, the only kind of motions which have been introduced are the simplest

ones, those defined by a set of dof-curves. These motions will be called basic-

motions. A basic motion Mi is defined as

Definition 1 basic motion Mi =
{
Ki, Ii,pi, T

d
i , Ci

}

74

where the key-times Ki, constraints Ii, adverbs by pi, duration Td
i , and dof-

curves Ci are dof-curves represented using methods such as described in Sec-

tion 2.2. We use Ci to indicate the distinction between the θij(T) operator,

which must be able to respond to queries about any dof j, many of which

may not be defined for a particular basic-motion.

Basic motions implement the formalism as follows:

τ s
i = 0

τ e
i = Td

i

τi(T) = T

θij(T) =

Cij(T) Dij(T) = required

0 otherwise

θ̇ij(T) =

Ċij(T) Dij(T) = required

0 otherwise

θ̈ij(T) =

C̈ij(T) Dij(T) = required

0 otherwise

Dij(T) =

required ∀ dofs j in Ci

undefined otherwise

To ensure that basic motions may be considered as examples, they are defined

to begin at T = 0. Using the reprojection algorithm (Algorithm 3.2), proper

placement and heading at T = 0 can be ensured.

3.9 Functional composition of motions

Now that the motion formalism has been defined and the basic motion type

detailed, other kinds of motions can be described which combine to form an

editing tool. These “other” motions embody key editing concepts like clipping,

mirroring, time-warping, and the like. If the basic motion is thought of as a

75

Motion

Functional-forms Basic-motions

Clip

Composition

Concatenation

Time-warp

Mirror

Affine

Selection

Piecewise-linear

B-spline

Hierarchical B-spline

Hierarchical wavelet

Fourier decomposition

Cyclification

Figure 3.21: A hierarchy of motion types

particular kind of motion in the object-oriented sense, the different motion

types form an object hierarchy, as shown in Figure 3.21. So far, the reader

has been introduced to the sub-tree shown in red, rooted at basic-motions.

This motion hierarchy and the functional relationships it encapsulates

form a language for expression of motion. Rather than being separate entities,

motions are organized as an acyclic graph of relationships, the parameters of

which can be altered at any time, thus allowing freedom to edit, try new ideas,

and undo mistakes. As each type of motion object must be able to support

the motion formalism introduced in Section 3.8, posing a question to one node

in the graph is answered by posing a cascade of questions further down in the

graph. These answers are combined or arbitrated between to produce a final

result. The operative variable, which is manipulated from one level of the

graph to the next, is verb-time, T .

Motion clipping

The simplest kind of edit a designer may wish to perform is to clip out a piece

of a motion. This could be done by extracting the relevant coefficients from

the original motion, but this approach has two drawbacks. First, the decision

is final. Short of redoing the operation against the original motion, there is no

way to change the clip points, unless it is to make the clip even shorter. Sec-

76

ondarily, multiple clips of one motion which overlap will unnecessarily contain

duplicate information.

By maintaining a relationship between the clip and the motion being

clipped, both pitfalls are avoided. The term “clip” refers here to this relation-

ship, not the operation of clipping out coefficients. The clip-relationship is

embodied in a clip-type motion, the second kind of motion from the hierarchy.

A clip, Mi, of another motion Mi′ , therefore, is defined as

Definition 2 clip motion Mi = {tsi′ , tei′ ,Mi′}

where tsi′ and tei′ mark the start and stop region of the clip in motion Mi′ .

These values are expressed in the canonical timeline of motion Mi′ .

The duration of the clip is derived by projecting the clip times from the

canonical timeline of the motion being clipped into its verb timeline, so

Td
i = Ti′(t

e
i′)− Ti′(t

s
i′).

We define the clip to begin at τ = 0, so

τ s
i = 0

τ e
i = Td

i

where Td
i is calculated as shown.

The dof position, velocity, and acceleration functions are calculated by

offsetting T by the projected clip start:

θi(T) = θi′(T + Ti′(t
s
i′))

θ̇i(T) = θ̇i′(T + Ti′(t
s
i′))

θ̈i(T) = θ̈i′(T + Ti′(t
s
i′)).

Likewise, the dof usage function, Dij, is implemented as

Dij(T) = Di′j(T + Ti′(t
s
i′)).

77

The dof position function is actually more complicated than θi(T) =

θi′(T + Ti′(t
s
i′)). In order for a clipped motion to be an example (Section 3.5),

it must start at the origin pointed along the Z-axis. This can easily be ensured

using Algorithm 3.2 for general repositioning and orienting of the root. For

simplicity’s sake, however, this and other motion types will be specified as if

this step were avoided. Note, however, that at T = 0, all motions to be used

as examples must be in the standard position and orientation. Potentially, we

would like all kinds of motions to be able to serve as examples.

A clip of a motion may not encompass all of the key-times of the original

motion, but even if the clip does, all the key-times must change to account

for the change in duration. Let us assume that all the internal key-times of

motion Mi′ are also in the clip Mi. A simple example of this is shown in

Figure 3.22. The key-times in the figure would be determined as follows:

Ki1 = 0 all motions start at T = 0

Kim = Ki′m − Ti′(t
s
i′) for internal keytimes (here 2 . . . 4)

Ki5 = Td
i the duration of the clip

The equation also works for the case where the clip does not encompass

all the key-times in the original motion, save that the m subscript must be

adjusted to account for the missing key-times, so for the internal key-times,

Kim = Ki′m′ − Ti′(t
s
i′)

where m′ is the adjusted subscript. Once the key-times are determined, the

time mapping functions, Ti(t) and ti(T), work as developed in Section 3.4.

The kinematic constraint function, Ii(T), is designed to exclude all those

constraints which fall outside the clip region.

An example clip motion is shown in Figure 3.23. It shows a walk that

has been clipped from ts = 0.44s to te = 1.33s. The original motion ran from

78

Ti'

Ti

T (t)i' i'
eT (t)i' i'

s

Ki'1 Ki'2 Ki'3 Ki'4 Ki'5

Ki2 Ki3 Ki4Ki1 Ki5

Figure 3.22: Shifting the key-times for a clip motion

Figure 3.23: A clipped walk motion

79

τ = 0s to 1.76s. The clipped region is shown in red and the unclipped excess

shown in blue. Note that the clipped region begins at the standard position

and orientation as required by Section 3.5

Affine

Shifting and scaling time is an important operation and is done using an affine

relationship. This operation enables the designer to put multiple motions in

the correct temporal relationship to one another for later compositing, as will

be described later in this section. Using an affine, a designer can also perform

an overall speed up or slow down to achieve a desired effect. The affine motion

is defined as

Definition 3 affine motion Mi = {τ s
i , s,Mi′}, s > 0

where τ s
i is the moment in animation-time when the motion is set to begin

and s a scaling factor which changes the overall duration of the motion.

The motion formalism is implemented using the following formulae:

τ s
i given

Td
i = s · Td

i′

τ e
i = τ s

i + Td
i

τi(T) = τ s
i + s · T

Ti(t) = s · Ti′(t)

pi = pi′

80

Kim = s ·Ki′m

Dij(T) = Di′j

(
T

s

)

Ii(T) = Ii′

(
T

s

)

θi(T) = θi′

(
T

s

)

θ̇i(T) = θ̇i′

(
T

s

)

θ̈i(T) = θ̈i′

(
T

s

)
.

As the affine changes only time, the position and heading at T = 0 are un-

changed.

Figure 3.24 shows 3 motions, a walk at normal speed in the middle, a slow

down at top, and a speed up at bottom. Each was multiply-exposed at 0.05

second intervals for a duration of 1 second. None was shifted in time.

Time-warping

In addition to shifting and scaling a motion in time, an animator may want

to alter the relative durations of some pieces of a motion. This is the primary

operation which projects a motion in and out of the canonical timeline, for

example. This type of motion is known as the time-warp.

Time-warping relies upon a function, U , to warp time by slowing or speed-

ing it as a motion progresses. The general form of the time-warp motion is

defined as

Definition 4 time-warp motion Mi = {U ,Mi′}

where U is a monotonically increasing function with domain and range [0..1].

The U function warps the relative duration of the segments of the motion.

81

Figure 3.24: A walk and 2 affines

82

The motion formalism is implemented as follows:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

pi = pi′

τi(T) = T + τ s
i

Ti(t) = refer to Equation 3.2

ti(T) = ti′

(
T + U

(
T

Td
i

))

Kim = Td
i · U

(
Ki′m

Td
i

)

θi(T) = θi′

(
Td

i · U
(

T

Td
i

))

Dij(T) = Di′j

(
Td

i · U
(

T

Td
i

))

Ii(T) = Ii′

(
Td

i · U
(

T

Td
i

))

θ̇i and θ̈i are similar to θi, Ii, and Di. Like the affine, the time-warp does not

alter the position or heading at T = 0, so motion Mi will be in the standard

position and orientation if Mi′ is.

Figure 3.25 shows 3 motions. The top is a non-time-warped walk. The

middle is one which has been eased-in using the function U(t) = t2. The

bottom has had its middle sped up using the function

U(t) =
1

2
+

1

2
sin

(
π

(
t− 1

2

))
.

Mirroring

Another often needed operation is the mirror, which switches the left/right di-

rection of a motion. Animation snippets are expensive to create, so being able

83

Figure 3.25: Time-warping

84

to take a walk to the left and turn it into a walk to the right is advantageous.

It is also a relatively simple task. The mirror of a motion is defined as

Definition 5 mirror motion Mi = {A, S,Mi′}

where motion Mi′ is the motion to be mirrored and A and S are sets of dof

pairs {j, j′} which are anti-symmetrical and symmetrical as defined below. As

the mirroring does not alter the duration or timing of the example, most of

the motion formalism can be implemented simply:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

τi(T) = τi′(T)

Ti(t) = Ti′(t)

ti(T) = ti′(T)

pi = pi′

Kim = Ki′m.

The Kim function may change the meaning of the key-times. A left-foot-down

key-time in Mi′ will need to be interpreted as a right-foot-down key-time in

Mi.

The other functions require more work. Figure 3.26 shows the skeleton

projected onto the X-Y plane raising its arm by rotating about the Z-axis at

the shoulder by an angle of Θj (assume the shoulder is the jth dof). If that

value were simply applied to the corresponding point on the other side of the

body, the arm would rotate up into the torso. The negative of this angle, −Θ

is used instead. Similarly, a Y rotation would have the same anti-symmetry.

These corresponding pairs in the dof values need to be exchanged and have

85

−Θ Θj j

Figure 3.26: Mirroring anti-symmetries

their signs flipped. Other dofs need to be copied directly from one side of the

body to the other, i.e. the symmetry pairs.

For the George skeleton (Figure 3.1), the anti-symmetry pairs are used

to exchange the Y and Z rotations for the left and right sides of the body

in addition to changing their sign. The change of sign for the root and spine

Y and Z rotations, in addition to the root X translation are also encoded

using the anti-symmetry pairs. The symmetry pairs are used to apply the X

rotations for the left side of the body to the right side.

The position, θi, function is defined as

θij(T) =

θi′j′(T) ∀ symmetry pairs {j, j′} ∈ Mi

−θi′j′(T) ∀ anti-symmetry pairs {j, j′} ∈ Mi

θi′j(T) otherwise.

The dof velocity and acceleration functions, θ̇ij and θ̈ij, are similar. The

dof-usage function Di, must return dof-usages for the opposite side of the

body, so would be defined:

Dij =

Di′j′(T) ∀ symmetry and anti-symmetry pairs {j, j′} ∈ Mi

Di′j(T) otherwise.

Since the spine is its own symmetry and anti-symmetry target, this will return

the correct answer even though some of the dof-usages will not actually shift

86

Figure 3.27: A mirrored jump-dive

from one side of the body to another.

The constraint function, Ii (T), requires that the constraints involving

the dofs for one side of the body be translated to use their appropriate coun-

terparts on the other side of the body, if appropriate. Constraints involving

the right foot, for example, in motion Mi′ , should report as involving the left

foot for motion Mi′ .

Figure 3.27 shows a jump-dive motion in red and its mirror in green.

Composition

Motion compositing is the process of taking multiple motions and executing

them simultaneously, producing a layered motion. For example, an animator

may want to take a wave and compose it with a walk to construct a walking

wave, as shown in Figure 3.28. A composition is defined as:

Definition 6 composition motion Mi = {pi,Mi0 ,Mi1 , . . .Min}

where the Mic ’s are the motions to be composed with one another. The adverb

value pi is designer specified since there is no reasonable procedural way to

assign an overall adverb value to a motion composed of many different motions

with many different, and potentially conflicting, adverbs settings. The motions

87

Figure 3.28: A walk/wave composition

may be placed anywhere on the animation timeline (possibly through use of

an affine), so the animation time bounds can be calculated as:

τ s
i = min

c
τ s
ic

τ e
i = max

c
τ e
ic .

The composition has the union of all the keys for its components. For

each key-time Kicm′ in a constituent motion,

Kim = τic(Kicm′)− τ s
i .

Likewise, the constraint function Ii would return the union of all the con-

straints present in the constituent motions:

Ii =
⋃
c

Iic(T).

88

The other functions of the motion formalism are not as simple. When

two motions overlap in time, how are their effects or kinematic constraints

combined to produce a reasonable effect? For this, a mechanism for arbitrating

the composibility of two (or more) motions must be designed.

Degrees of freedom & motion composibility

Many such arbitration schemes are possible and no one method is currently the

preferred one. The Verbs & Adverbs system makes use of a 3-valued dof-usage

value on a dof-by-dof basis to determine composibility. The three types of

dofs used are those which are required, defined, and undefined.

A required dof is one which is integral to the effectiveness of a motion.

An example would be the knee rotation of a walk cycle. A defined dof is

one for which information has been provided but which is not integral to the

successful completion of the motion’s primary goal. An example would be the

wrist rotation of the walk. Finally, an undefined dof is one for which no

information is provided. A waving motion, for example, would not need to

define the knee rotation.

Figure 3.29 shows the different dof usages for a walking motion and

waving motion. Yellow dofs are required, red dofs are defined, and gray

ones are undefined.

For sufficiently complicated motions, these distinctions may not be fine

enough. Take, for example, the walk/wave composition motion shown in Fig-

ure 3.28. If it were to be used basic motion in a further motion edit, what

would its dof-usages be? One answer would be that the arm and legs are

required and the other dofs defined, as shown in Figure 3.30.

Rather than define a static value for the dof-usages of a motion, motions

should provide a mechanism for returning the dof-usage of any dof at a given

89

Figure 3.29: DOF-classes for walk/wave motions

Figure 3.30: DOF-usage values too broad

90

time. Hence the dof-usage function Dij (T).

Motion compositing determines dof-usages procedurally, by querying the

motions which are being composited. The motion with the highest class at

a given time is granted control of the dof and the dof-usage is set at that

level. Motions with conflicting dofs can be either tagged as ill-constructed,

further arbitrated, or both. In this work, conflicting dofs are arbitrated in a

first-come-first-served basis depending upon the order in which the constituent

motions of a composition were added into the composition. Additionally, flags

indicating a potential problem are set which can be queried. So,

Dij(T) = max
c
Dicj(T)

where undefined < defined < required.

Finally, the position function, θij, is

θij(T) = Arbitrate (θi0j(Ti0), θi1j(Ti1), . . . , θinj(Tin))

where Tic = Tic (τi(T)).

A time-lapse picture showing the dof-usages on the figure through time

is depicted in Figure 3.9. Note that the arm is defined at the beginning,

becomes required as the motion moves into the wave period, and returns to

defined at the end. No dofs where undefined in this composition.

Concatenation

Concatenating a number of motions means to place them end-to-end on a new

timeline. This differs from a composition and affine-time-shift in that special

care must be taken when dealing with the root dofs, so that it appears that

the motions follow one another reasonably in space.

A concatenation motion is defined as

91

Figure 3.31: Walk/wave dof-usage time lapse

Definition 7 concatenation motion Mi = {pi,Mi0 ,Mi1 , . . .Min}

where the Mic ’s are the motions being concatenated in order from 0..n. Like

the composition motion, the overall adverb value is specified by the designer

as pi. The concatenation as a whole is defined to start at τ = 0, so τ s
i = 0.

The total duration of the concatenation is the sum of the durations of the

Mi’s, so the basic time mapping functions are defined as follows:

τ s
i = 0

Td
i =

n∑
c=0

T d
ic

τ e
i = Td

i

τi(T) = T

Only one motion is active at a given time τ , so the elapsed time spend in

92

any motion at τ is defined as

Telapsed = T −
n−1∑
c=0

T d
ic

where n is the maximum n which satisfies

n−1∑
c=0

T d
ic ≤ T.

If no n satisfies, then the first motion has not yet been exhausted, so Telapsed =

T .

Key-times can now be defined. For any key-time Kinm′ in a constituent

motion,

Kim =

Kinm′ +
∑n−1

c=0 T d
ic n > 0

Ki0m′ otherwise

where m and m′ indicate the key-time offset due to the concatenation having

key-times from all the constituent motions. Once the key-times are deter-

mined, the time functions Ti(t) and ti(T) can be calculated using the standard

formulae from Section 3.4.

The kinematic functions are calculated using

θi(T) = θic(T − Telapsed)

θ̇i(T) = θ̇ic(T − Telapsed)

θ̈i(T) = θ̈ic(T − Telapsed)

The position function is not as simple as shown here. In order for examples

to be concatenated in space, the start of a motion Mic+1 must be lined up

with the end of a motion Mic . A general reorientation (Algorithm 3.2) can be

used to line them up, making the actual θi not much more complicated than

as above.

This concatenation mechanism does not smooth between motions other

than to line them up at the root. Discontinuous change in the body rotations

93

Figure 3.32: A concatenation

will make for strange concatenations. Transitioning mechanisms, described

in Section 5.5 and Appendix B, can smooth out these discontinuities. An

example concatenation is shown in Figure 3.32, discontinuities and all. Color

indicates the different motions in the concatenation. Note the discontinuities

between the motions.

Selection

Another motion type, this one a helper in the construction of more complicated

motions, is the selection. This kind of motion is particularly simple, as it turns

on and off dofs, i.e. it changes some dof-usages for some of the dofs. While

simple, it is useful for complex editing sessions. Imagine a waving verb, such

as seen earlier in this chapter. When the wave came out of the motion capture

94

analysis system, its dofs are of equal weight. The designer can go in and

annotate the dofs and assign some of them to required and some to defined.

It is possible, however, that this motion may be used in two places, one where

the arm is required, and one where the arm is simply defined. The designer

may want the motion to have the dof values defined for the non-arm parts

of the body in one circumstance and undefined elsewhere. This is where the

selection motion comes in handy.

The selection of a motion Mi, is defined as

Definition 8 selection motion Mi = {Mi′ , {j, usage}∗}

where Mi′ is the motion having its dof-usages adjusted and usage either

undefined, defined, or required. The motion formalism is easily imple-

mented for this motion as

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

τi(T) = τi′(T)

Ti(t) = Ti′(t)

ti(T) = ti′(T)

pi = pi′

Kim = Ki′m

θij(T) =

θi′j(T) ∀ dofs not undefined

0 otherwise

95

Dij(T) =

undefined ∀ dofs j undefined by the selection

defined ∀ dofs j defined by the selection

required ∀ dofs j required by the selection

0 otherwise

Ii(T) = Ii′(T)− those involving undefined dofs

The dof velocity and acceleration functions, θ̇i and θ̈i, are similar to θi.

3.10 Cyclification

As reported in Efficient Generation of Motion Transitions using Spacetime

Constraints [124], hand animation or motion capture often yields motions

which are almost cyclic, but which should logically be perfectly cyclic. Varia-

tions in human motion and motion capture data noise yield non-cyclic results.

Animators who do not take pains to produce exactly cyclic motion are also

likely to produce almost cyclic motions.

Some simple processing can help to ensure the cyclicity of a motion. For

example, take the walking motion introduced earlier in this chapter. The de-

signer marks out two times where they believe a cycle is located. A region

around this proposed cycle is searched to try to find the most closely matched

times τ0 and τ1. Once they are found, spreading the remaining error through-

out the cycle yields a smooth cyclic motion. Typically, this construction is

then fit through a cyclic B-spline type motion, which yields C − 2 continuity

at the end-points. Not all of the dofs are cyclified, however. As is typical, the

root requires some special handling. The X-translation, Z-translation, and

Y-rotation dofs are not cyclified. The concatenation mechanism keeps these

motions flowing from one to another in these dofs. Cyclification can also

often be done using the transitioning mechanism detailed in Section 5.5.

96

Figure 3.33: Cylification smooths out the cycle for seamless concatenation

Figure 3.33 shows the effectiveness of this cyclification technique. The

picture on the left shows the cycle-clip (as defined above) simply concate-

nated with itself. Note the discontinuity at the color change. The picture on

the right, however, was cyclified and exhibits a smooth transition from one

repetition of the cycle to the next.

Rather than alter the dof-curve coefficients to achieve a perfect cycle,

however, a functional cycle form obeying the motion formalism can be con-

structed. Assume that we have constructed a clip motion Mi′ which marks the

beginning and ending of a cycle in amother motion Mi′′ as determined above.

A cycle motion Mi of Mi′ , therefore, is defined as

Definition 9 cycle motion Mi = {ci,Mi′}

where ci is a vector of booleans indicating which dofs are cyclified. Remember

that the root Z translation is typically not-cyclified. Using the boolean vector

generalizes that notion. Implementing the motion formalism is as follows:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

97

τi(T) = τi′(T)

Ti(t) = Ti′(t)

ti(T) = ti′(T)

Kim = Ki′m

pi = pi′

Dij(T) = Di′j(T)

Ii(T) = Ii′(T)

θij(T) =

θi′j(T) cij false

θi′j(T) +
T ·dij

Td
i
− dij

2
cij true

where dij = θi′j(T
d
i′)− θi′j(0)

The dof velocity and acceleration functions, θ̇i and θ̈i, are similar to θi.

3.11 Conclusions

In this chapter, the idea of an example was presented. Examples are motions

which meet a number of criteria, none of them overly strict. A motion formal-

ism was introduced which structures the way in which information is extracted

from a motion to facilitate playback. Tools for manipulating example motions

were described which implement the motion formalism. Rather than treating

a clip differently than a composition, the motions can be handled using the

same methods. The motion objects can be used to construct an animation

editing system which allows for undo at any stage of the editing process with-

out seriously adding to the memory size requirements of the system, as the

motion data is never copied.

98

Chapter 4

Verbs & adverbs

Our hero walks into a moonlit room turning sharply to the left

and then right, scanning purposefully. Dejected, he realizes that

he is alone. He walks further into the room in that slow, lackluster

way of the disappointed. Off in the distance, he hears a familiar

welcoming voice and walks to its source full of life, brimming with

pleasure in each carefree step. His intended had not left, after all.

Earlier in this dissertation, both hand animation and motion capture were

detailed. Using these tools, a competent animator could design a sequence for

the above scene. What if, however, the unseen voice was of a hated foe, or

an unknown person. The walk, on the one hand carefree, would need to be

modified to fit the new scene. For a movie, modifying the motion using the

same tools used for the original motion would be a fine solution. If this were an

interactive game or a shared virtual environment, however, the circumstances

might not be known until runtime. In order to fit the scene, either a large

collection of appropriate motions must be gathered or the motions themselves

must be parameterized, able to handle many different situations.

This chapter describes a method for using multidimensional function in-

terpolation to derive controllable motions, verbs, from sets of examples. Ac-

99

quiring these examples and putting them into the proper form was described

in Chapter 3.

4.1 Overview

There are many ways to parameterize motions. Chapter 2, the overview and

literature review chapter provides a synopsis of the primary techniques, break-

ing them into three primary groupings: procedural, simulated, and interpo-

lated. The Verbs & Adverbs technique is an interpolated method used to

construct motions, or verbs, which respond to a set of control knobs, known

as adverbs. The goal of this technique is to create these verbs using as in-

put primarily that which an animator or motion capture system will typically

produce. Thus, this system is designed to leverage talents or properties of

each.

Please recall that examples were defined to have a number of desirable

properties, as was detailed in Section 3.5. These were:

1. similar motion structure,

2. same skeleton,

3. continuous dof-curves,

4. anatomically-plausible use of joint angles,

5. similar use of joint angles for similar motions, and

6. same initial placement and heading at the beginning of the example.

7. in canonical timeline

8. identical dof function encoding schemes.

100

The last restriction requires that all the examples be encoded using the same

mechanism, for example, a B-Spline, and that they each have the same number

of coefficients. This does not mean that each of the dofs for a particular

example i have the same encoding, but rather that the jth dof for each

example be encoded in the same way. The next-to-last restriction ensures

that a given coefficient in a particular example encodes the same structural

portion of a motion as that coefficient for a different example.

If the coefficients are so constrained, then it is possible to interpolate the

motion by constructing independent problems over the coefficients. Each of

these separate problems can be solved using a non-linear multi-dimensional

interpolation technique. As will be described later, due to the sparsity of data

for the interpolated animation problem, we solve for these interpolations using

radial basis functions. In the example acquisition phase, the designer assigned

key-times, which were used to reproject the motions into a canonical time-

line. The canonical timeline ensures that the coefficients can be interpolated

meaningfully, but removes timing information from the example set. An in-

terpolation scheme for timing must also be used in order to recapture that

information. The timing information is merely the key-times, which can be

thought of as further coefficients to be interpolated.

There are many ways to perform multi-dimensional interpolation. Wave-

lets, for example, have proven a useful encoding for many computer graphics

problems such as radiosity, surface approximation, and video-lookup. One

problem, however, is the large number of samples required by this encoding,

typically O
(
2D

)
where D is the dimension of the function being encoded. In

radiosity calculations, for example, this is not a concern since the problem is

typically over-constrained. For animation, however, each sample represents a

hard-won animation, a precious commodity. An interpolation scheme needing

101

fewer samples must be used if the number of control knobs desired is high.

For this reason, a radial basis function, or rbf, encoding was used. In partic-

ular, the Verbs & Adverbs system uses a radial B-spline as its basis function.

This encoding has the advantage that it leads to an interpolating space, thus

preserving exactly each example animation. Wavelets, on the other hand, are

typically approximating encodings. Further advantages include speed of eval-

uation and fitting. rbf approximation has potential pitfalls which will be

discussed in this chapter. Extensions to the basic technique can be used to

overcome these pitfalls.

There are a number of symbols and subscripts used in the description of

the interpolation technique. Table 4.1 synopsizes the main ones used in this

chapter.

4.2 The canonical timeline

In Chapter 3, the concepts of the canonical timeline and key-time were intro-

duced. This section explains the connection between the canonical timeline

and motion blending. As will be introduced later in Section 4.3, the Verbs &

Adverbs system blends motions together by setting up interpolations of dof-

curve coefficients. For a two-example verb, for instance, the blend is quite

simple. Assume the verb had one adverb. The blend would be related to how

close the desired motion was to the examples’ adverb values. If the desired

motion was half way from M1 to M2 in adverb, then a 50% blend would be

used.

To illustrate the importance of blending examples in the canonical time-

line, rather than in the timeline in which the examples were designed, consider

the motions shown in Figure 4.1. At first glance, the blend would be obvi-

ous: right up the center. A closer look at the distribution of the temporal

102

O
b
je

ct
V

ar
ia

b
le

S
u
b
sc

ri
p
t

su
b
sc

ri
p
t

m
ea

n
in

g
su

b
sc

ri
p
t

ra
n
ge

M
ot

io
n

ex
am

p
le

M
i

M
ot

io
n

ex
am

p
le

n
u
m

b
er

1.
.N

u
m

E
x
a
m

pl
es

D
O

F
θ

i
M

ot
io

n
ex

am
p
le

n
u
m

b
er

1.
.N

u
m

E
x
a
m

pl
es

j
D

O
F

in
d
ex

1.
.N

u
m

D
O

F

B
-s

p
li
n
e

B
k

B
-s

p
li
n
e

in
d
ex

1.
.N

u
m

C
P

B
-S

C
on

tr
ol

P
oi

n
t

b
i,

j,
k

P
oi

n
t

in
A

d
ve

rb
S
p
ac

e
p

i
M

ot
io

n
ex

am
p
le

n
u
m

b
er

1.
.N

u
m

E
x
a
m

pl
es

K
ey

-t
im

e
K

m
K

ey
ti

m
e

in
d
ex

1.
.N

u
m

K
ey

T
im

es

R
ad

ia
l
b
as

is
R

i
b
as

is
as

so
ci

at
ed

w
it

h
M

i

R
ad

ia
l
C

o
effi

ci
en

t
r

i,
j,

k

L
in

ea
r

B
as

is
A

l
A

d
ve

rb
in

d
ex

1.
.N

u
m

A
d
v
er

bs

L
in

ea
r

C
o
effi

ci
en

t
a

j,
k
,l

D
is

ta
n
ce

d
i

D
is

ta
n
ce

to
p i

T
im

e
V

ar
ia

b
le

ra
n
ge

C
lo

ck
ti

m
e

τ

K
ey

-t
im

e
ti

m
e

T
0.

.K
N

u
m

K
ey

T
im

es

G
en

er
ic

ti
m

e
t

0.
.1

Table 4.1: Terminology

103

Figure 4.1: Motions M1 and M2

samples, however, will reveal that there is a different phrasing to the two mo-

tions. Figure 4.2 shows a plot of one of the dof-curves for each of the two

motions, showing how they differ. Each motion has four key-times: start,

first-speed-change, second-speed-change, and stop.

If blended without respect to these key-times, the resulting motion is

strange, as shown in Figure 4.3. By lining up the motions in the canonical

timeline, however, the blend is better. Figure 4.4 shows this. The timing

information lost in canonical timeline can be synthesized from the examples.

Recapturing expressive timing is often vital to the success of an interpolated

motion.

Key-times

Key-times and the canonical timeline were both introduced in Section 3.4. A

graph of key-times plotted against canonical time for a collection of walks is

shown in Figure 4.5. The key-times were placed at the foot-down events, as

shown in Figure 4.6. While the timelines progress in a relative lockstep, small

104

Time

X
-T

ra
ns

la
tio

n
Figure 4.2: Plot of X-translation for M1 and M2

Figure 4.3: Strange blend due to incompatible timelines

105

Figure 4.4: Good blend with canonical timeline

variation is seen. These variations correspond to differences in the relative

durations of portions of the walking cycle in the different examples.

Examples need not have such similar key-time graphs, however. A graph

for a selection of idling motions is shown in Figure 4.7. Notice the greater

variation in timing for these motions. For example, take two extreme idling

motions, one a despondent hands on hips motion and another a brusque, angry

hands on hips. For these two motions, the key times would be at the following

moments: hands leave side, hands on hips, hands leave hips, hands at side.

These key-times are represented in canonical time, and result in the graph

shown in Figure 4.8.

The sad timeline shown in brown and the angry in red. The angry idler

keeps his hands at his side and snaps them quickly to his hips, as evidenced

by the small time it takes to get from the K1 to K2, shown by the short region

between the two red dashed lines on the vertical (verb-time) axis. If we were

to blend the two motions at a particular verb-time T , for example, the result

would be that shown in Figure 4.9. Notice the odd backtracking in the path

106

t

T

Figure 4.5: Key-times for a walking repertoire

Figure 4.6: Walking key-times placed at foot-down events

107

T

t

Figure 4.7: Key-times for a idling repertoire

T

t
Arms come up

during this region
of time

Figure 4.8: Key times for two extreme hands-on-hips idles

108

Figure 4.9: No key times blend

Figure 4.10: Use key times

109

of the arms. If the blend is done in the canonical timeline referenced by the

key-times, the blend is over corresponding moments in the two motions, and

results in a better blend shown in Figure 4.10 as evidenced by the smoother

arm trajectories.

The examples are sampled before they are used in the construction of the

interpolating spaces. As the dof-curves must be continuous, this is a simple

process. One potential problem with using the canonical timeline, however, is

that it destroys timing information. Recall the previous example. The “anger”

conveyed in the hands on hips is conveyed partly in the differing arch of the

back, but the bulk of the emotional content was expressed in the timing of the

motion. Clearly, some mechanism must be used in order to preserve timing

and duration information while using the canonical timeline for interpolation.

Each motion has a set of key times (the last of which is the duration),

however, and these can be considered yet another set of coefficients to be

interpolated using the same multidimensional interpolation scheme as used

for the dof curve coefficients.

So, the number of separate interpolation spaces needed for a motion M is

(NumCP × NumDOF + NumKeyTimes) for a motion where each dof is en-

coded using the same representation and (TotalCoefficients + NumKeyTimes)

for a motion with a heterogeneous set of dof representations. The latter can

be useful for cutting down on the number of coefficients required to encode

relatively low-frequency dof-curves, such as often occur in the spine and knee.

4.3 Verb construction

Chapter 3 showed how to construct a set of examples obeying the example cri-

teria. Recall that the examples, by the verb-construction stage, are in canon-

ical form, which includes being in the canonical timeframe. The next step in

110

the production pipeline is to construct from them a verb. This verb represents

a continuous “space” of motions parameterized by a set of adverbs. A point

in this space represents a complete animation for a particular combination of

adverb settings. These settings may change from one moment to the next

if, for example, the emotional state of the actor changes or the environment

changes.

The goal is to produce at any point p in the adverb space a new motion

M(p, t) derived through interpolation of the basis motions. Since animation

source data is previous, interpolating the examples is an added requirement.

Therefore, when p is equal to the adverb setting for a particular example

motion i, M(p, t) = Mi(t).

Each example motion has one free variable for each control point defining

the dof curves and one free variable for each key-time. The time warping

described in Section 4.2 ensures that corresponding control points in each

example motion specify similar moments in each motion, even if the overall

lengths and internal phrasing of the example motions differ. This allows us to

treat the example motion interpolation as a separate problem for each control

point and each key-time (i.e. TotalCoefficients + NumKeyTimes individual

interpolation problems).

The standard problem of multivariate interpolation is as follows: given N

distinct points pi in Rn and N values vi in R, find a function f : Rn → R,

such that for all i, f(pi) = vi, and such that f does “the right thing” between

the points p. In general, “the right thing” means filling in the space between

data points as smoothly as possible. The potentially high dimensionality of the

space defined by the adverbs, coupled with the desire to require few example

motions (perhaps only two or three times the number of adverbs), presents dif-

ficulties for many interpolation methods. Given these requirements, a combi-

111

nation of radial basis functions and low order (linear) polynomials was selected

for this problem. The polynomial function provides an overall approximation

to the space defined by the example motions. It also allows for extrapolation

outside the convex hull of the locations of the example motions. The radial

bases then locally adjust the polynomial to interpolate the example motions

themselves.

Radial basis functions have the form:

Ri (di(p)) (4.1)

where Ri is the radial basis associated with Mi and di(p) a measure of distance

between p and pi, most often the Euclidean norm ‖p−pi‖2. Because the sums

of radial bases cannot represent an affine or polynomial function, radial bases

are often augmented by adding a polynomial of fixed degree.

Details of the mathematics for this type of interpolation can be found in

the seminal work of Micchelli [103] and in the survey article by Powell [117].

Radial basis functions have been used in computer graphics for image warping

by Ruprecht and Müller [126], and Arad et al. [3]. Pighin, et. al., [115] used

radial basis functions to perform blending of facial texture data.

Each of the dof curves θj are defined by B-spline coefficients, bjk where k

varies from [1 . . .NumCP]. The value of each interpolated dof curve coefficient

in this space, bjk(p), is defined as

bjk(p) =

NumExamples∑
i=1

rijkRi(p) +
NumAdverbs∑

l=0

ajklAl(p) (4.2)

where the rijk and Ri are the radial basis function weights and radial basis

functions themselves and the ajkl and Al the linear coefficients and linear bases

as explained in Section 4.3. Interpolated key-times are similarly defined as

Km(p) =

NumExamples∑
i=1

rimRi(p) +
NumAdverbs∑

l=0

almAl(p). (4.3)

112

For each verb there are (NumCP × NumDOF) (or TotalCoefficients for a

mixed representation verb) control point interpolations (Equation 4.2) and

NumKeyTimes key-time interpolations (Equation 4.3).

The remaining problems are choosing the specific shape of the radial bases

and determining the linear and radial coefficients. The radial basis shapes are

determined by the spacing of the examples in the adverb space. The coefficients

are determined in two steps, by first solving for the linear coefficients and then

for the radial basis coefficients.

Linear approximation

In the first step, the linear coefficients are found by fitting a hyperplane

through the adverb space that best fits the variation across the example mo-

tions of the selected control point or keytime. The linear basis functions are

simply Al(p) = pl, the lth component of p, and A0(p) = 1. An ordinary least

squares solution determines the NumAdverbs + 1 linear coefficients, ajkl, that

minimize the sum of squared errors between

b̃ijk (pi) =
NumAdverbs∑

l=0

ajklAl (pi) , (4.4)

and bijk, the actual B-spline control point (or key-time) being interpolated,

where pi is the adverb setting for the ith example motion. Letting bjk and

b̃jk denote vectors of each bijk(pi) and b̃ijk(pi) for a fixed j and k, the linear

approximation leaves the residuals

b̄jk = bjk − b̃jk. (4.5)

It is the job of the radial basis to interpolate these residuals.

113

Radial basis function approximation

At this stage, one radial basis function is defined for each example motion.

Later, in order improve the technique, a hierarchy of radial basis functions

will be used. This will be explored in Section 4.6. The radial basis functions

are solely a function of the distance, di(p) = ‖p−pi‖2 between a point in the

adverb space, p, and the point in the adverb space corresponding to example

motion i, pi. The radial basis itself, Ri(p), has its maximum at pi (i.e., where

d = 0). In order to limit each example motion’s influence to a local region of

the adverb space, a radial basis function with compact support is used. This

allows, as will be explained in coming sections, local refinement of the verb.

There are a number of choices for the specific shape of the radial basis. For its

combination of simplicity and C2 continuity, a radial B-spline was used with a

cross section of a dilated B-spline, B(d
α
). The dilation factor, 1

α
, is chosen for

each example motion to create a support radius for the B-spline equal to twice

the Euclidean distance to the nearest other example motion. For α = 1, the

cubic B-spline has a radius of 2.0, thus α is simply the minimum separation

to the nearest other example in the adverb space. Given this definition, it is

clear that the example motions must be well separated.

The coefficients, rijk, can now be found for each dof curve coefficient and

key-time by solving the linear system,

Drjk = b̄jk

where rjk is a vector of the rijk terms for a fixed j and k, and D is a square

matrix with terms equal to the value of the radial basis function centered on

motion i1 at the location of motion i2. Thus

Dii,i2 = Bi1

(
Ri1 (pi2)

αi1

)
.

Results using this technique are shown in Chapter 6.

114

4.4 Kinematic constraints

Earlier, key-time annotation was introduced as a method for making the Verbs

& Adverbs system handle motions with different duration or internal timing.

When motions are blended, previously solid foot constraints can become some-

what wobbly, especially in regions of the interpolation space far from any ex-

ample. The animations produced in these regions of the adverb space can be

corrected by fixing kinematic constraint violations using standard techniques.

An important aspect of a motion is the constraints imposed upon it. For

example, a walk is defined by a period of support during which one or both

of the feet are stationary on the floor. Along with the dof values, a motion

needs to be able to answer questions concerning the active set of constraints

at a time T .

Why is this important when the example motions encode the constraints

implicitly? When a motion M is defined on a skeleton S, the constraints will

be correct, but often the motion or skeleton is modified or multiple motions are

blended as in during a transition. In these situations, the constraints can be

violated slightly. Since constraints like foot support are visually crucial to the

perceived overall quality of a motion, even minimal violations are distracting.

Effective ik is essential for cleaning up these problems and is essential for

run-time-modifiable 3D figure animation.

Constraint specification language

A skeleton can be simply defined as a hierarchical collection of joints, some

articulated and some not, each separated by an offset, possibly of zero length.

Kinematic constraints are defined upon these joints. A common constraint,

one used to describe support phases of a walk, for example, could be called a

stay-put constraint. This can be defined by the tuple {ts, te, j,P}, i.e. from

115

Figure 4.11: Support constraint for a walk

ts to te the joint j should remain at point P relative to the coordinate frame

in which the skeleton is rooted. The times are expressed in canonical in order

to deal with the changing duration and timing caused by changing adverbs.

More generally, a stay-put constraint, C, can be defined by

C = {ts, te, j,P,F} (4.6)

where F is the frame of reference in which P is defined. Such a constraint

can be used to handle many tasks. A common example would be the walk, as

shown in Figure 4.11.

The red region shows the support constraint from t = 0.38 to t = 0.68.

These verb times were recorded for the verb at a particular adverb setting p.

FG, the global frame is the constraint reference frame, P the point where the

foot touched down in FG, and j the foot.

116

Another, less simple, example is catching a ball. Suppose one knew that

the ball was to be caught at a certain time ts and held until te. The constraint

would be

Ccatch = {ts, te, jhand, (0, 0, 0) ,Fball} .

This constraint, when enforced, would mold the hand to the trajectory of the

ball as defined by the ball motion, when this is probably not the desired effect.

A better solution would be to impose 2 constraints, one to catch the ball, and

another to hold the ball:

C1 =
{
ts, th, jhand, (0, 0, 0) ,Fball

}

C2 =
{
th, te, jball, (0, 0, 0) ,Fhand

}
.

C1 constrains the skeleton’s hand to be at the ball from ts to th, when the catch

occurred. C2 constrains the ball, yet another actor, to be at the skeleton’s hand

from th to te.

These few examples form a basis of how a constraint specification lan-

guage would be formed. Other constraint forms, like look-at which lines up a

frame of reference along a vector to another frame of reference, and track-path

generalizes the stay-put by replacing the position with a function returning

position, round out a constraint specification. Other forms could be added as

expressiveness dictates.

Automatic Kinematic Constraints

Some of the inverse-kinematic constraints in a motion can be detected auto-

matically. Michael Gleicher takes this to an extreme in his animation work,

automatically calculating hundreds of spacetime constraints on a motion [55].

Short of this, however, some simple techniques can be used to find some of

the constraints, offloading some of the burden from the animator or motion

capture technician.

117

Support constraints are the easiest to detect as they place a part of the

skeleton, typically a foot, in a single spot in a reference coordinate frame over

a short interval of time. A support constraint, C, would be one of the form:

C = {ts, te, js,Ps,Fg} (4.7)

where T (te)− T (ts) is larger or equal to some prespecified minimal duration.

The support joint, js, needs to remain at Ps in the global reference frame,

FG. Noting that motion capture data is noisy and that hand animation is

rarely designed in a state of absolute perfection, the point Ps is unlikely to be

pristine, so the search is for periods of time where Ps moves a small amount.

If this is below some defined threshold, the centroid of that region is tagged

as a support point. This technique was used effectively by Rose, et. al., in the

detection of support points duration the creation of torque-minimal transitions

[124], discussed in Appendix B.

4.5 The verb design loop

The mechanism described thus far can be used to produce controllable anima-

tions which keep the aesthetic of motion capture of hand designed source, but

another level of quality and interactivity of design can be achieved through

refining the initially constructed verb. This process is depicted by Figure 4.12.

Once the designer creates a verb from the initial examples, the verb is

inspected by executing the verb at different adverb settings, p, both inside

and outside the convex hull of the examples. In general, the verb’s output

is tolerable (but not necessarily optimal) inside this hull and is useful for

extrapolation in a region near the hull. As p drifts further from the examples,

the verb’s output generally becomes unacceptable since linear approximation

is an insufficient interpolation mechanism for animation. By fixing problem

118

construct
initial

examples

make
a

verb

inspect
the

verb

use
the

verb

modify verb
output at
some bad

p

good

bad
Figure 4.12: Verb refinement process

areas inside the hull and outside, the animator can both improve the overall

quality of the interpolations and provide for a greater range of extrapolation.

If during the inspection process the designer finds a region which is un-

acceptable, the output of the verb at that p is taken. Note that this is a

simple (basic) motion defined by dof-curves which are themselves defined by

coefficients. This motion is modified and reinserted as a new example. If this

M(p, τ) is inside the convex hull of examples, typically it is relatively close to

being acceptable. If it is outside, it can be close or far from useful depending

upon from where in the adverb space it was taken. By iterating this pro-

cess, more and more of motions defined for the adverb space become quality

motions.

M(p, τ) is improved either through recapturing a trained motion cap-

ture actor or, more likely, with keyframing tools such as SoftImage (TM) or

3D-Studio/Max (TM). Adding a new example into the verb requires setting the

key-times and resolving the linear systems which define the radial B-spline and

linear approximations. This can be done quickly since the current solutions

are likely to be nearly correct for the new example. This refinement process

becomes a new way for an animator to design animations and a new way for

the animator to think about interactive animation.

A simple walk with one adverb, happiness, was designed by an anima-

119

tor trained with the Verbs & Adverbs system. The initial verb, defined with

three examples, is shown in Figure 4.13. The examples for this verb span

p = {−10 . . . 10}. The figure shows some extreme extrapolations, some useful

ones and good interpolations. The animator chose p = 18 (Figure 4.14) as a

candidate for refinement. He fixed the foot slide problem, dealt with some of

the more extreme eccentricities, and added this as an example to the verb. The

results are shown in Figure 4.15 and exhibit a greater range of useful motions.

This figure shows the happy side of the scale, showing the new example at

+20. A comparison of the changes our animator made to the initial too-happy

walk are shown in Figure 4.16. The initial too-happy is yellow and the new

example motion made by changing it is shown in green.

Unfortunately, the animator loop can interact poorly with the verb mech-

anism as described so far. This interaction can turn a refinement step into

one that decreases the overall quality of the interpolations for a large portion

of the adverb space. This occurs when two (or more) examples are placed too

near to one another. Fixing this shortcoming is the subject of the next section.

4.6 Multiresolution radial basis function ap-

proximation

Let us reconsider the walk example from the last section. It is a simple one-

adverb verb so will illustrate the problem of example closeness well. The

original verb consisted of three examples at happiness -10, 0, and 10. A small

subset of the rbf approximation curves for some of the dofs are shown in

Figure 4.17. These curves are nicely smooth and interpolate the examples.

If we duplicate the middle example and place it at happiness 1.0, the

smoothness of the approximations deteriorates as shown in Figure 4.18. This

120

H
ap

pi
ne

ss

+20	 Too-happy

+15	 Quite-happy

+10 	 Happy

+5	 Almost-happy

0	 Neutral

-5	 Almost-sad

-10	 Sad

-15	 Quite-sad

-20	 Falling over sad

Figure 4.13: Initial verb to be refined

121

Foot support
sliding

Figure 4.14: What’s wrong with the overly happy walk?

is due to the way in which the radii for the radial B-splines are chosen: twice

the distance to the nearest example. In essence, this causes the two middle

examples to have a very local effect. The linear approximation represented by

the line in the figures is also affected since the two middle examples are given

double weight. The lack of smoothness in the coefficient interpolations affects

the resultant motions as shown in Figure 4.19. Notice that the motions in the

column A (no extra example) form a more smooth interpolation from neutral

(happiness = 0) to near-sad (happiness = -3) than those in the other columns.

Also notice that as the examples get closer together (columns B, C, and D),

the approximation becomes one between the two extreme examples (happiness

= 10 and happiness = -10) with a spike in the middle. In contrast, the column

A interpolation is much more a function of all the examples all over the space.

The rbf approximation scheme can be improved through by taking two

key steps: recursive clustering of close points and recursive multi-resolution

approximation given the cluster assignments. The technique is detailed in the

122

+15 	 Quite-happy

+10 	 Happy

+5	 Almost-happy

0	 Neutral

+20	 Extremely-happy

+25 	 Amazingly-happy

H
ap

pi
ne

ss

Figure 4.15: Improved walk

123

Improved
leg

stance

Toned
down extreme

arm swing

Figure 4.16: Differences at happiness = +20

remainder of this section.

Clustering

The problems with the approximation described thus far are two-fold. First,

the radii for the two center basis functions are too small. This in effect cancels

the contribution of these example throughout most of the space. Second, the

center of the approximation is given too much weight in the construction of

the linear approximation. Both of these problems can be alleviated through

clustering. Clustering is the process of taking multiple points and treating

them as one. Figure 4.20, for instance, shows the middle two points treated

as a cluster. The faint line shows one level of the approximation with the two

middle points treated as one. The thicker line shows the full approximation

that interpolates all the example points.

The reader will likely see the value of this: clustering is used to reduce

concentrations of dots into single (synthesized) examples and then rbf ap-

proximation is used on this new (reduced) data set. This is followed by a

recursive refinement of the space thus yielding a multi-resolution rbf approx-

124

Figure 4.17: The simple technique works well for these examples. The green

dots are the examples, the orange line the linear approximation and the blue

line the complete approximation.

125

Figure 4.18: The simple technique fails for these examples. The green dots

are the examples, the orange line the linear approximation and the blue line

the complete approximation.

126

A
B

C
D

Figure 4.19: Ill-behaved interpolations lead to unsatisfactory results

127

Figure 4.20: Two close examples made into one cluster

imation scheme. Before I describe the approximation scheme, the process of

cluster construction is outlined.

For a verb with d adverbs, d + 1 examples are the minimum needed to

establish the linear approximation. A least d + 1 clusters, therefore, must

be used. The number of clusters, however, should be determined from the

structure of the data. Regions in space finely sampled with examples should

be treated as distinct clusters.

Clusters are established here using a randomized algorithm run many

times in order to establish confidence in the solution. The basic algorithm is

detailed in Algorithm 4.1.

128

Algorithm 4.1 Basic clustering scheme
BasicClustering (P ,C ,n)

01 // n , the number of clusters, C , to form over the k example points P

02

03 Establish n initial clusters C located randomly within the convex-hull of P

04

05 for each Pi , assign it to the nearest cluster Cj

06

07 for any empty clusters Cj , steal a point randomly from the clusters with

08 2 or more to establish a singleton cluster

09

10 // now the initial case is now established

11

12 repeat until no cluster reassignments occur

13 center each Cj as the average of the Pi in Cj

14

15 for each point Pi

16 if there is a cluster Cj closer than the one to which it is currently assigned

17 reassign Pi to Cj unless doing so would empty Cj

This algorithm performed many times and the best result is chosen to

establish the final clustering. The best result is the one with the smallest

cluster radii where each cluster radius is the distance from the center of that

clusters to the farthest point in that cluster from the center. The algorithm

converges very quickly, so it can be run often to establish a reasonably high

confidence in the solution. A globally-minimal solution is not required. At

line 10, each cluster is guaranteed at least one member. Line 17 ensures that

no cluster is ever emptied. Singleton clusters, of course, are allowed. The

quality of the clustering is assigned to be the sum of the radii of the individual

clusters. If there are n clusters for n points, the clustering will have zero cost.

Randomization is used to establish confidence in the solution rather than an

analytical non-linear optimization.

Figure 4.21 shows the iterations for one run of this algorithm. The colors

129

1 2

3 4

Figure 4.21: Clustering algorithm in action

indicate the clustering. Small circles are the examples. Color indicates cluster

assignment. Cross-hairs mark each cluster center. Large colored circles indi-

cate the cluster radii. Iterations 1 to 2 show the largest difference with the

purple and blue clusters taking points away from the green and tan clusters

respectively. The initial purple cluster is one of the “stolen” point taken from

green, i.e. purple initially had no elements before the end of iteration 1. Iter-

ations 3 and 4 see a balancing of the purple and red clusters. The algorithm

took 4 iterations to arrive to a local minimum. Note that the cost is assured to

monotonically decrease due to the nature of the algorithm. Running this algo-

rithm many times with random starting guesses will build up confidence in the

solution. As stated before, finding the global minimum is not a requirement.

One problem with this algorithm is that it takes as input the number

130

of desired clusters where this is a quantity ideally determined in a program-

matic manner. Improving the algorithm, however, is not difficult, as seen in

Algorithm 4.2.

Algorithm 4.2 Improved clustering algorithm
ImprovedClustering (P , C , maximum-cost, maximum-clusters)

clustercount = d

repeat until no splits occur

BasicClustering (P ,C ,clustercount)

cost =
∑

(radii of C)

if ((cost > maximum-cost) && (clustercount < maximum-clusters))

clustercount++

C is the completed cluster assignments, and d the number of adverbs,

dimensionality, of the points, P .

This algorithm will modify the clustering until the best result is reach

subject the supplied restrictions on cost and cluster-count. For circumstances

where the animator has clearly defined clusters due to the pattern of their

modifications, however, it is not unreasonable to ask them to supply the cluster

count, in which case the basic scheme of Algorithm 4.1 will work fine.

Multiresolution technique

Each cluster acts as an example point, thus collapsing groups of proximal ex-

amples. The base cluster level has few points widely spaced from one another.

The radius assignment of twice the distance to the nearest example (cluster),

therefore, does not ruin the approximation.

The linear term, Equation 4.4, was formulated as

b̃ijk (pi) =
NumAdverbs∑

l=0

ajklAl (pi) .

131

In order to take into account the cluster level, another subscript is needed

for the examples (clusters) p:

b̃ijk (p0,i) =
NumAdverbs∑

l=0

ajklAl (p0,i) .

The zero-th level of clustering corresponds to the coarse approximation. The

highest (most fine grain) level is simply all the example points treated as

singleton clusters and with cluster radii 0. Note that they do not have radial

basis radii of 0. Those are calculated using the normal technique of twice

the distance to the nearest other cluster (or on the finest level, nearest other

example).

The residuals, b̄jk = bjk − b̃jk (Equation 4.5), need to be solved for by

the radial basis functions. Rather than doing this in one step, however, it is

done iteratively from coarse to fine resolution. The coefficients, now rc,ijk to

account for this residual can be found for each dof coefficient and keytime by

solving the linear system

Dcrc,jk = b̄c,jk (4.8)

where c is the cluster level from 0 (coarse) to NumClusterLevels (all-examples)

and rc,jk is a vector for the rc,ijk for a fixed c, j, and k, and D a square matrix

with terms equal to the value of the radial B-spline centered on point pc,i1 at

the location of pc,i2 . Thus

Dci1,i2
= Bc,i1

(
Rc,i1(pc,i2)

αc,i1

)
. (4.9)

The value of b̄c,jk is the sum of the linear approximation and the contribution

of all the layers up to c − 1. The interpolated coefficients, therefore, can be

calculated as

bjk(p) =
NumAdverbs∑

l=0

ajklAl(p) +
NumClusterLevels∑

c=0

NumExamples∑
i=1

rc,ijkRc,i(p). (4.10)

132

4.7 Efficiency concerns

There are three main efficiency concerns, the speed of the system at author

time and run time, and the storage efficiency of the representation.

Runtime evaluation

This technique is efficient. It can be used to drive animations for multiple

figures at real-time frame rates. Indeed, the system is bound primarily by the

frame-rate of the 3D rendering of the figure. Assuming a constantly changing

adverb setting p, a certain number of coefficients must be evaluated at each

timestep. The number of the coefficients is (4 ·NumDOF +NumKeyTimes) for

a B-spline encoded solution since for a given time τ , 4 coefficients are required

for each dof curve and all the key-times are required to transform τ into

canonical time t.

Evaluating each coefficient requires an evaluation of a hyperplane and

the radial basis functions for each of the examples and the clusters. Each

clustering level must have at least one fewer cluster than the next higher level,

which could lead to O (n2) evaluation time where n is the number of examples

in finest level of clustering, i.e. the original number of examples. If we assume

a halving of examples (clusters) at each level of clustering, a conservative

assumption, we can simplify to 1 + 2 · n or just O (n).

Author time evaluation

While runtime evaluation time is of paramount importance, the cost to set up

the interpolation spaces is also an issue, especially considering the iterative

refinement aspect of the animator loop.

Setting up the initial hyperplane requires O (n3) in order to solve the non-

133

square linear system using singular value decomposition, which was chosen for

its robustness. As n, the number of examples (or coarse level clusters) is

typically small, this use of svd does not overly impact efficiency. We use

Gauss-Seidel at each level of the rbf approximation, since the D matrices

are square and diagonally dominant. This iterative algorithm will converge

quickly as the solutions at each level of the hierarchy are already reasonably

well approximated by the approximation at the lower levels of the hierarchy.

Furthermore, clever bookkeeping can facilitate the updating of the solu-

tion without starting over. Thus, in conjunction with Gauss-Seidel we achieve

fast re-solving of the systems as the animator moves example points around.

Large changes in the clustering will require new solutions.

Storage requirements

The mrbf verb encoding is space efficient and serves as a reasonable com-

pression scheme for repertoires of similar motion when compared with typical

techniques commonly employed in the game industry. The example motions

that constitute a verb are stored in some form either as simple motions such as

B-spline or piecewise-linear, or as functional compositions with simple motions

as the leaves in that expression graph (Chapter 3). Let us assume they are

stored simply with each example requiring (NumDOF ×NumCP) coefficients

of storage. This is not a restriction since any functional composition can be

well approximated with a simple representation as desired.

The total coefficients required for the examples, therefore, is (NumDOF×
NumCP × NumExamples). For the the walk verb from Christian’s motion

capture session, Figure 6.2, that is (44× 32× 20) = 28160) coefficients.

The mrbf approximation requires (NumKeyTimes+NumDOF×NumCP)

separate interpolation spaces. Each of those requires (NumAdverbs +1) coeffi-

134

cients for the linear approximation and
∑

c NumExamplesc coefficients for the

radial basis functions. Using the same conservative estimation of cluster halv-

ing, 2 ·NumExamplesNumClusterLevels coefficients are required, twice the number

of examples before clustering. For the walk, therefore, each mrbf space needs

(4 + 1) + (2× 20) = 45 coefficients for a grand total of 45(4 + 1408) = 63540

coefficients, not appreciably more than the storage requirement for the exam-

ples themselves. Once the verb is complete, the examples need no longer be

stored.

A fine question to ask is whether fewer basis motions are needed in a

Verbs & Adverbs based application than another. To get the same gradation

of motion, games will typically store many variations, often many more than

the number of examples needed to construct a verb with the same range of

motion. A verb, therefore, is a more efficient representation of a particular

motion than storing a number of variations. This is not surprising, as the

mrbf interpolation seeks to capture what a particular motion does over a

range of variation.

4.8 MRBF interpolation and human biome-

chanics

As will be seen in Chapter 6, walking, running, reaching, and idling have

all been shown to be amenable to the Verbs & Adverbs technique. Smooth

blends of many motions in the multi-dimensional adverb space yields convinc-

ing controllable animations. Whether this technique can, in general, work for

a myriad of human motions with many adverbs, is still an open question. The

Verbs & Adverbs technique interpolates the motions produced by a biologi-

cal system, rather than the control system used to generate the motions. Is

135

smooth interpolation of motion a reasonable things to do?

A human’s motion is dictated by three primary factors: the environment

in which he is placed, his internal control system (brain, neurons, reflexes),

and the dynamical properties of the underlying biomechanical system (joints,

tendons, muscles, bones). Hogan [71] [72] shows that the two latter systems,

when coupled, form, in essence, a single biomechanical system. Furthermore,

he showed that in the absence of new forces (typically muscle forces), the

system only decreases its overall kinetic energy. This is due to factors such as

friction in the joints. Biomechanical systems are thus critically damped and

since muscles can only inject a finite amount of energy, the system as a whole

will always have bounded (and in general decreasing) energy. The end result,

Hogan showed, is that motions produced by biological systems are smooth.

This is hardly surprising, but extremely important to establish the use-

fulness of interpolation for simulating biomechanical systems. The damped,

smooth nature of human physiology has been used effectively in the graphics

community. Hodgin’s group relies upon the critically damped nature of the

system in their work on controllers [70] [68]. Grzeszczuk [59] showed the useful-

ness of neural-network approximation for learning dynamics control strategies

and, lately, for learning dynamics systems in total [60]. Neural-networks, of

course, are smooth n-d function interpolators like rbfs. rbfs are often formu-

lated using neural-network-like structure and nomenclature. Gelfand, Lane,

Handelman, Gullapalli [84] [62], and others showed how neural-network-like

entities called cmacs (Cerebellar Model Articulation Controllers) could be

used to effectively generate human motion control strategies in concert with a

dynamics simulator.

Dynamically simulated motions have a major drawback in that the an-

imator, a talented ally in the production environment, is removed from the

136

process. Interpolating control systems, therefore, is insufficient for making

best use of an animator or a library of motion capture data. Actual motions,

the things animator’s develop, are what must be interpolated.

A biological system’s motion is proportional to the second derivative of

the forces acting upon it (F = ma). These accelerations are driven by the

control system, which was shown to be smooth. Continuous acceleration im-

ply smooth velocities and, by extension, positions. Smooth changes in the

controller yield smooth changes in the motions produced by the system. In-

terpolating motions using a C-2 continuous interpolation scheme like mrbfs,

therefore, is a reasonable way to interpolate human motion.

4.9 Some further problems

There are some questions which could be posed concerning the Verbs & Ad-

verbs mechanism:

• What is an “accurate” parameterization of the examples?

• How do the adverbs interact with one another, i.e. are the chosen ad-

verbial axes orthogonal?

• What axes are needed in order to capture the space of human emotion

in movement?

Each of these constitutes an open problem related to Verbs & Adverbs.

Example parameterization

Ensuring the accurate assignment of adverbs is difficult. For some adverbs,

namely the structural ones, this is a relatively easy process since the adverb

137

value is objective. In these cases, adverb assignment can be done automati-

cally. The reach verb, as will be seen in Chapter 6 (Figure 6.4) has three axes:

the X, Y, and Z offset of the hand goal from the position of the body root at

the start of the motion. Once the goal-reached key-time is set, these adverbs

can be set automatically.

If, on the other hand, the adverbs were subjective, such as “happiness”,

setting the adverbs is a trickier task. The meaning of a 10.0 happiness value is,

at best, ill-defined. While psychological studies of human motion might prove

useful, the work presented here trusts the designer to recognize the differences

between the examples and set the parameters in an appropriate way.

Additionally, the designer must ensure that the suite of verbs which will

later be used to construct a verb-graph (Chapter 5) are parameterized in a

consistent way. A 10.0 happy should have the same emotional impact for a

walk verb as it does for a idle verb. Likewise, if verbs from many designers

are used to form a single application, care will need to be taken to ensure

even treatment of the adverbs so as to avoid any strange transitions. This

could occur, for example, if one verb had a distribution of examples along a

happiness axis from [−100 . . . 100] and another from [−10 . . . 10] when in fact

the ranged over the same gamut of human happiness.

Adverb orthogonality

The walking verb (Figure 6.2) used a number of examples which had non-

zero components in multiple adverbs. The “angry” example, for instance, was

deemed to be unhappy and knowledgeable. Thus, the unhappiness stemmed

from an understood source yielding an angry reaction. The “despondent”

walker was possessed with unhappiness not understood. This pop-psychology

mixing of human emotion is open to many pitfalls. So far, these problems have

138

not proved too troublesome.

When the walk verb was designed, the axes were chosen and a number

of examples placed in the space defined by those adverbs. The unhappy plus

knowledge equals anger was a rationale used to place the angry example. A

different set of axes, however, could easily have been chosen. “Angriness”

could be one such axis.

Furthermore, the orthogonality of happiness and knowledge is in ques-

tion. Whether a person can be happy with no correlation of knowledge is

a psychological question outside the scope of computer graphics. Primarily,

the Verbs & Adverbs group chose to ignore this potential problem since it has

not seemed to affect the common-sense usage of our system from the human

figure animation standpoint. If Verbs & Adverbs were to find usage in the psy-

chological research community, these issues would need to be addressed more

satisfactorily. An overview of one such effort follows.

Complete parameterizations

The emotional axes used in our examples form a very ad-hoc set of this the

author and animators in the project thought useful. Clearly, happiness and

sadness are insufficient adverbs if one’s goal is to parameterize the complete

gamut of human emotion. An interesting question to ask, therefore, is what set

of adverbs can be used to describe the emotional content of all human emotion.

Movement analysts have been interested in this very subject. Bartenieff [17]

provides a good introduction to the field of Laban notation, which is one of

the major techniques for analyzing and parameterizing human motion.

Rudolf Laban created a form of analysis which has come to be called La-

ban analysis or Laban notation, used often by movement analysts and dancers.

He identified a number of parameters which can be used to describe the qual-

139

Effort Indulging Figthing

space indirect direct

weight light strong

time sustained sudden

flow free bound

Table 4.2: Range of effort in Laban notation

itative and structural characteristics of a motion.

Effort is on the of the key ideas in the notation, and is divided into four

sub-categories: space, weight, time, and flow. Each sub-category ranges from

indulgent, or non-resisting, to fighting, resistive motions. Table 4.2 shows

these ranges.

These four parameters; space, weight, time, and flow; can be considered

adverbs in the construction of a verb with the addition of some parameters

for simple structural elements such as direction of motion, turning radius, etc.

An angry motion, for example, would be direct, strong, and sudden. A sad

motion would be sustained and bound. Whether Laban notation truly has

enough parameters to place the emotion characteristics of human motion is an

open question.

While Laban analysis provides a systematic and consistent framework, it

is not a calibrated one. A space of 10.0 is not a well-defined quantity, just as

a happiness of 10.0 is not as mentioned before. A talented movement analyst

trained in Laban notation, as a talented animator using an ad-hoc parameter-

ization, can develop a reasonable calibration and from them, reasonable verbs.

We have not, at present, worked with one so trained, though we may in the

future.

140

4.10 Conclusions

This chapter described the Verbs & Adverbs mechanism, detailing the mathe-

matics behind both single- and multi-resolution radial B-spline approximation.

Examples of the system’s output were followed by a short discussion of open

problems. Additionally, the connection between modeling human phenomena

and human processes was made.

Verbs are short segments that can perform a motion in an infinite variety

of ways. In order to create long animations, however, a mechanism for gluing

verbs together must be constructed. The verb-graph is one such mechanism

and is the subject of the next chapter.

141

Chapter 5

The verb graph:

a verb management scheme

Using multiresolution radial B-spline approximation, controllable animation

segments, verbs, can be constructed. These verbs can exhibit subtle aesthetic

variations as well as structural difference. Verbs, however, are short move-

ments. In order to make use of these verbs, a scheme for concatenating and

transitioning must be designed. In this section, the verb graph is detailed,

which is one possible solution to this problem. The work of Perlin and Gold-

berg [113], Blumberg and Galyean [20], and Badler [5], as well as The Mo-

tion Factory’s Motivate (TM) product, are alternate methods. A transitioning

mechanism will be introduced in Section 5.5 which is used to bridge the gaps

between motions to yield a seamless animation under the control of the user,

an automated system, or a combination of the two.

5.1 Overview

The verb graph is an object and a set of algorithms designed to structure the

overall flow of an animation. Verbs are the basic unit of expression and are cho-

sen to correspond to a logical unit of action, such as a walk-cycle. While larger

142

stand-up walk-around fall-down

Figure 5.1: A linear verb graph

sequences could be designed using the Verbs & Adverbs technique, breaking

long animations up into their most primal sequences enables more opportunity

for greater interactivity. This has been shown to be a valuable technique by

other researchers. Additionally, many interactive character games are designed

using this technique.

A transition occurs when one verb flows into another and is necessitated

by splitting animations into small units. The mechanism used in this work

is low-overhead and can only transition relatively similar motions. A transi-

tion, for example, should not be used to bring a character from a run all the

way into a sleeping motion. These actions are quite dissimilar and a transi-

tioning mechanism capable of bridging these motions would need to be quite

sophisticated. For similar motions, however, a relatively simple transitioning

mechanism can be used in a convincing way. More sophisticated transitions

limited to non-parameterized motions were explored during the early phases of

the Verbs & Adverbs work. These transitions seek to minimize the amount of

torque needed and are detailed in Appendix B. Note that even this technique

would still not have the knowledge to transition from a run to a sleep motion

effectively; there are simply too many logical steps the actor must perform to

bridge these two motions.

The verb graph is used to structure what types of motions can follow

which other motions. The nodes of the graph are the different actions a char-

acter can be called upon to perform and the arcs are the transitions that

the designer builds using a transitioning mechanism. The graph becomes the

object manipulated by a system in order to make the animation progress.

143

stand

grapple

punch

jump

circle-kick

slash

stab

shoot

crouch

Figure 5.2: A “home position” style verb graph

sleep

wake-up

hit-snooze

get-up

standing walk

run

trip

celebrate

cartwheel

crouch

Figure 5.3: An arbitrary verb graph

144

Different verb graph topologies can be developed. Each has its use, though

this work will deal mainly with the unrestricted graph topology. An ani-

mated movie, for example, could be thought of as a linear verb graph of

the form depicted in Figure 5.1. A slightly more complicated verb graph

is often used in video games, the home-position style graph, as seen in Fig-

ure 5.2. It has a special stance in which all animations begin and end, thus

making the transition-design task easier and the overall bookkeeping for the

animation engine simpler. This kind of graph is seen in popular games like

Mortal Combat (TM), Primal Rage (TM), and Tekken (TM), all successful fighting

games in arcades around the world. The work here is primarily concerned with

unrestricted graphs, an example of which is shown in Figure 5.3. Complicated

relationships between verbs can be described with these graphs, forcing the

animation to flow along a logical path from motion to motion. Transitions

take place at logical junctions, not simply at convenient times. Home posi-

tion style graphs are much more restricted in the scope of the motions they

can reasonably contain. The bookkeeping and control of unrestricted graphs,

however, is more difficult than that of a simple graph.

5.2 The verb graph formalism

The verb graph is a tuple of the form

{V, T, S, G} (5.1)

where V is a set of verbs, parameterized or otherwise, T a set of transitions

generated using the method to be described in Section 5.5, S the set of start-

ing verbs where S ⊆ V , and G a set of gesture verbs, those which may be

played concurrently with the verbs in V using the gesturing mechanism to be

described in Section 5.6. The state of the verb graph will be introduced later,

145

but for the sake of the next section, there is a queue of pending verbs. The

first verb on the queue, Q0 is the one currently playing.

Time and the verb graph

As was seen earlier in Section 3.4, time is not a trivial notion for an animation

system. Animation-time, τ , is the natural timeframe of an animation. An ani-

mation designed to play for a certain time τ d is defined for a portion of the real

timeline from [τ s
i . . . τ e

i]. In chapter 4, the construction of parameterized verbs

was detailed. Parameterized motions are problematic because their realtime

durations can change due to their current parameterization. Additionally, the

parameter setting can change the relative duration of the pieces of an anima-

tion. Another kind of time, canonical time, t, was introduced to deal with these

changes in phrasing or duration. One can be sure for any conceivable adverb

setting p, that a given t indicates the same structural portion of a motion.

Canonical time is therefore useful for annotating the verb with information

like kinematic constraints and sound events like a footfall. It is also useful, as

will be seen in Section 5.5, for specifying transitions. Animation-time is the

type of time used for the verb graph. It starts at τ = 0 and progresses towards

+∞. Verb-time, T , implies a finite duration, T d, so animation-time is used

instead for the verb-graph. Verb-graphs, as will be seen, can be played for an

indefinitely long period of time.

A verb graph is initialized to start at τ = 0 at the beginning of one of the

verbs in its start set, i.e. at verb-time T = 0 for that particular verb. When

the front of the verb queue, Q0, is completed or transitioned from, that time

needs to be recorded. τ in will mark the animation time when the current Q0

came to the fore of the queue. When the item at the front of the queue is a

verb (as opposed to a transition), it is rare that it was entered at the exact

146

Q0

Q -1

Q -2

Q1

Q2

A

B

C

A B

B C

τ

t in

tout

Figure 5.4: Verb queue times

beginning of that verb or that it will exit at the very end due to the nature of

the transitions. Hence, two times tin and tout, expressed in canonical time, will

mark the portion of the Q0 verb which will actually be played as τ progresses.

tin is defined by the transition which came before Q0 and tout by the transition

in spot Q1. These times are indicated by Figure 5.4.

As the queue past spot Q0 is not fixed, tout can change at any time as

a new transition is queued to exit from the currently executing verb. At a

given time, however, tout is always known. If we know τ in, tin, and tout, we can

estimate when the current Q0 will be exhausted, i.e. τ out, with this equation

τ out = τ in + T0(t
out)− T0(t

in) (5.2)

where T0(t
out) projects tout into the verb-time of the verb at the front of the

queue, Q0, and similarly for T0(t
in).

The last few paragraphs have assumed that Q0 is a verb, not a transition,

but since verbs and transitions must each adhere to the motion formalism

(Chapter 3), very little changes. The tin and tout for a transition in spot Q0

are simply 0 and 1 since an entire transition gets played. It takes the entire

transition to transition properly from one verb into another.

When τ reaches the currently evaluated τ out, the τ in and tin numbers must

be recalculated and the queue advanced. Since they are not fixed, τ out and

147

tout are always calculated when needed given the current adverb setting p.

Algorithm 5.1 resets the static values when the item at the front of the queue

is exhausted.

Algorithm 5.1 Reseting the times
UpdateQueue (Q , τ in , tin , tout)

if Q0 is a transition and Q1 is the verb we are entering

tin = tBe from Q0 (exit from the end of the current transition)

tout = tAs beginning of transition out of the verb we’re entering now

else Q0 is the verb we’re leaving and Q1 is a transition which will be played in full

tin = 0

tout = 1

end if

τ in = τout

pop Q

The verb graph’s state

The verb graph is merely a description of the possible courses an animation

could take. Another entity is required to detail the state of the actor being

controlled with the graph and the internal state of the graph. Separating these

two allows a system to control multiple actors with one verb graph object. The

verb graph state object is a tuple of the form

{
τnow, tin, tout, τ in, Q, G, Θ, C

}
(5.3)

where τnow is the current animation time of the animation measured from 0,

when it began, Q, the primary verb queue, G the set of active gestures (to

be described in Section 5.6), Θ the vector describing the actor’s configuration,

i.e., its dof values, and C the set of active constraints at τnow. τ in, tin, and

148

tout, were described previously in this chapter. The first six entries in the Θ

vector describe the position and orientation of the root of the creature. They

are used specially by some of the algorithms to be presented in this chapter. Of

particular interest are the X and Z translations and the Y rotation, otherwise

known as an actor’s “heading”.

The verb queue indicates what verb is currently playing and which verbs

are pending. Verb queues are of the form

{v, t}∗ v

or

{t, v}∗ tv

where the v’s are verbs and the t’s transitions between them. Note that the

primary verb queue cannot be allowed to empty as the animation would have

nowhere to “go” and would need to end or restart in a non-smooth manner.

The root of the actor comprises the first 6 dofs, though only the X and

Z translations as well as the Y rotation (the heading) are of interest. As

τnow marches forward, the root dofs need to be handled so as to make the

animation look like one seamless piece. This is handled in a way similar to the

handling of the concatenation verb as detailed in section 3.9.

Updating the state of the verb graph from the currrent time τnow to a

new time τnext, τnow < τnext, is detailed in Algorithm 5.2.

149

Algorithm 5.2 Verb-graph increment function
PositionDOFs (τnext ,S)

Tnow = S.τnow − S.τ in

Tnext = τnext − S.τ in

for root-DOFs j

∆ Θj = θ0j(T
next) − θ0j(T

now)

Θj = R(∆ Θj)

for non-root-DOFs j

Θj = θ0j(T
next)

S.τnow = τnext

τnext is the time to which the system wishes to advance, S the state of the

verb graph. θ0j is the dof position function for the verb at the front of the

queue (Q0). The R indicates a concatenation of the delta change in the root

according to the general concatenation algorithm introduced in the previous

chapter.

Assuming no transitions occur from τnow to τnext, to update the state of

the graph from τnow to τnext, the information for the root dofs is calculated

for these two times. At first glance, this might seem strange. After all, the

actor currently contains the information for τnow. There are two shortcomings

with using this information, one trivial and one more serious. The informa-

tion for the root is transformed to follow smoothly from the last time it was

evaluated rather than the raw root information gathered from the verb itself,

which is likely near the point of origin. A verb graph can take the actor far

from the origin. Of course, the raw information could be saved for reference.

The important reason, however, is that the verbs are parameterized, therefore

changing, so if we are to find out what change occurred for the root motion at

a given parameterization from τnow to τnext, both times must be evaluated at

150

Figure 5.5: A simple verb parameterized by adverb happiness

the current parameterization.

For example, verb Mi is parameterized by 1 adverb, happiness, which

has the side effect of moving the actor further along the X when the motion is

happy then when it is unhappy. Figure 5.5 shows the actor walking at different

parameter values.

Remember that verbs alone do not “remember” from a time τnow to τnext.

Evaluating a verb at a given time is completely separate from evaluating it at

another time. Verbs are simply templates detailing how a particular action is

performed at different parameter settings. Therefore, if we vary the param-

eter setting, we can achieve strange looking animations. Figure 5.6 shows a

quadratic ramp up in happiness for the aforementioned verb which achieves

very high velocities in the resulting motion. Foot support phases break up.

Ramping down the motion could cause the character to go backwards if the

forward motion resulting from the advancing T were more than offset by the

decreasing happiness parameter. Verbs alone, therefore, cannot achieve coher-

ent animations in the presence of changing parameters.

151

Foot support breaking up

Figure 5.6: Velocity boost

Calculating the root info for τnow and τnext yields deltas, thus ensuring

no velocity boosts or backtracking unless, of course, properly dictated by the

verb at its current parameterization.

If the τnow is outside the current verb, calculating this delta is difficult

since the values for the verbs are only intra-verb consistent. In this case, a

neutral τ̂ is chosen at the end of the current verb to serve as a bridge between

the two verbs. Root calculations are performed from τnow to τ̂ and then from

τ̂ to τnext. If τnow and τnext are separated by more than 1 item on the queue,

then the process is iterated. The algorithm which deals with this is found in

Algorithm 5.3.

152

Algorithm 5.3 Updated verb-graph algorithm
UpdateVerbGraph (τnext ,S)

τ̂ = S.τ in + T0(S.tout) − T0(S.tin)

while (τnext ≥ τ̂)

PositionDOFs (τ̂ ,S) Algorithm 5.2

UpdateQueue (S) Algorithm 5.1

τ̂ = S.τ in + T0(S.tout) − T0(S.tin)

PositionDOFs (τnext , S)

While the root is being updated, the constraint set must also be kept

consistent. If a constraint is on a body part, such as the left-foot, for example,

the system needs to know when the foot goes from one constraint into another.

If the frame rate is too low, constraints can be held for far too long as periods

of unconstraint may be ignored. In a walk cycle, the foot support could be

kept one support phase too long. Instead, the system needs to keep track of

which constraints go in and out of existence.

5.3 Restrictions on the verb graph state

The goal of a program using the verb graph, aside from constructing anima-

tions, is to keep the graph in a continuable state. Being continuable means

that that the animation has something left to do. The Q0 verb should always

leave through a transition in the Q1 spot. In order for a verb-graph to be con-

sidered continuable, there must always be an achievable transition leading out

of Q0. At a given moment, τnow− τ in indicates how much time has been spent

in Q0. If tnow were the current clock time τnow projected into the canonical

timeframe of Q0, the achievable transitions leading from Q0 are all those with

153

a transition start time, ts0 ≥ tnow where ts0 the time when the transition begins

to leave the verb in spot Q0 expressed in Q0’s canonical timeframe.

Typically, when a verb Q0 comes to the front of the queue, an achievable

transition and verb are added to the queue if Q0 was the last item on the

queue. The transition chosen is a weighted random choice based upon relative

weights assigned to the transitions by the designer. It is assumed that the

designer never designs a transition which enters into a verb beyond the last

exit out of the verb. This kind of pathological condition can be easily detected

at verb graph design time.

The item at the front of the queue will play until a transition leaving it

is reached. At any time, an achievable transition may be placed in the Q1

spot followed by its exit verb in Q2. The Q0 verb cannot be halted and control

given to another verb without going through this transition mechanism. To do

so would break the continuity of the overall animation. The designer is tasked

with designing the transitions and the graph in such a way that interactivity

is not lost due to long uncontrollable sequences of canned animation.

A verb with adverb settings p will be very similar to one with adverb

settings p′ where p and p′ differ by a small epsilon ε. This is guaranteed by

the continuity of the radial basis function approximation used to construct the

verbs. As ε grows, however, continuity is not assured. As τnow moves forward,

therefore, p must not be allowed to change drastically lest the animation loose

its continuity. For this reason, p is constrained to move at most ε · dt for an ε

chosen to reflect the magnitude of the adverb parameterization.

5.4 Non-standard graph layouts

Most of the verb graphs studied here have no articulation points, i.e. no

transition which, when removed, would result in a disconnected graph. The

154

A B

Figure 5.7: A one-way graph

Figure 5.8: A graph with a special start sequence

implication of this is that all verbs are reachable from all other verbs by some

path of transitions. This property is not a requirement, however, just a useful

form of graph.

A graph which contains one articulation point connects two separate sets

of verbs. From one set, all verbs are reachable. From the other set, only verbs

within that set are reachable. Verb graphs of this form will be called one-way

due to the one-way nature of the articulating transition. A graph of this form

is shown in Figure 5.7.

Clearly, once the purple transition is taken from the A verb to the B verb,

the queue can never again contain a verb from the red set. Any attempt to

search the graph for a path from a verb in the blue set to one in the red set will

fail. A graph like this could prove useful, however, as a way to separate motion

155

A B

Figure 5.9: A sub-graph containing a special death

into distinct modes or for playing a special start-up motion which can never

be revisited, as shown in Figure 5.8. This is a common video game metaphor.

Similarly, the character’s demise could be handled by a one-way graph like

the one shown in Figure 5.9. The red verbs are the death sequence, with A

being the actual death and B the lying around dead loop, as in Id ’s genre

defining games Doom (TM) and Quake (TM). Capturing these kinds of common

game elements is essential for a system from which a game could be built.

5.5 Transitioning

Previously, the concatenation motion object was described (Section 3.9). One

of the primary problems with this object was its inability to smooth out the

transitions from one motion to another. That is the role of transitioning. This

topic has been dealt with by Rose, Perlin, and others [124] [113]. The first type

of transition which will be described is the simple blending kind of transition

used in Perlin’s work. An extension for the root dofs allows this transition to

be of greater use. Quaternions [129], have proven useful for transitioning and

are used here for non-root dofs.

A special case transitioning mechanism, torque-minimal transitioning, will

be described with its related topics in Appendix B. Not real time, this tech-

156

Figure 5.10: Linear blending function, α(t) = t

Figure 5.11: A sigmoid blending function, α(t) = cos(−π+tπ)+1
2

nique has the added restriction of working only with static motions, making

it inappropriate for parameterized verbs.

Simple blending

Perlin [112] [113] describes a technique for blending between motions using

blending functions to achieve a weighted average of the two motions. A blend-

ing function, α, is a non-decreasing function, possibly discontinuous, with

domain and range of [0..1]. Two plausible candidate functions, both used in

the work here, are shown in Figures 5.10 and 5.11.

Transitioning can be thought of as another type of functional relationship,

this one between a motion being transitioned from and one being transitioned

to. These, of course, can be the same motion, which allows the transitioning

object to be of use for constructing motion cycles. The transition motion, Mi,

157

tAs
tAe

tB
e

tB
s

θAj (t)
θBj (t)

θ jA
(t)

B

Figure 5.12: The transition

between two motions MA and MB is defined as:

Definition 10 transition motion Mi = {α,MA, tsA, teA,MB, tsB, teB}

where α is the blending function as defined previously, MA and MB, the mo-

tions being blended from and to respectively, and [tsA . . . teA] and [tsB . . . teB] the

blending regions in the two motions expressed in canonical time. Figure 5.12

shows the transition diagrammatically. As τ progresses through motion A

through the transition A ; B and into B, a smooth blend of the two motions

will occur. If the designer placed the transition plausibly, the viewer will not

be able to tell that the motion was not originally designed as a single unit.

The duration of the “from” region is calculated as T e
A − T s

A and the “to”

region T e
B−T s

B where T s
A = TA (tsA) (the canonical-time to verb-time projection

for motion MA) and similarly for T e
A, T s

B, and T e
B. In general, these durations

should be chosen to be roughly equal, but that is not a requirement. The

duration, Td
i , of the transition Mi, therefore, is

Td
i =

(T e
A − T s

A) + (T e
B − T s

B)

2

Transitions are defined to begin at T = 0, so the time mapping functions for

the transition, are:

Ti(t) = t · Td
i

ti(T) =
T

Td
i

158

Z

X

Figure 5.13: A bad root transition

with Td
i the duration of the transition as defined above. The constraint set

function, Ii, will be handled using an ik constraint arbitration scheme to be

described in Section 5.5. The position function, θij, is is a weighted sum of

the position functions of the from and to motions,

θij(T) = (1− α(t))θAj (T + T s
A) + α(t)θBj (T + T s

B) (5.4)

where t = ti(T) and T s
A and T s

B as defined previously.

Blending with root integration

Equation 5.4 works well for non-root dofs. If the same method used for transi-

tioning the non-root dofs were applied to the root, however, some potentially

undesirable results can occur, especially on turning motions when the char-

acter is in motion. Imagine the two motions, A and B shown in Figure 5.13

in red and blue respectively. These motions would blend to lead the actor to

the end point in motion B. This path is shown by the dashed purple line.

The overall accelerations would be increased, however, as the transitioned mo-

tions would swing left and then right. A better transition would be one which

blended the velocities of the two constituent motions, as is shown by the solid

159

Figure 5.14: Walk with foot support constraints indicated

purple line. This blend, when integrated, yields better position values than a

simple blend. For dynamic motions like this example, integration yields better

results. Position, θij, therefore, is achieved by

θij(T) =

(1− α(t))θAj (T + T s
A) + α(t)θBj (T + T s

B)

for non-root dofs i
∫ t

t′=0
(1− α(t′))θ̇Aj (T ′ + T s

A) + α(t′)θ̇Bj (T ′ + T s
B)

otherwise

where t = ti(T), T ′ = Ti(t
′), and T s

A and T s
B as defined previously.

Inverse kinematic arbitration and enforcement

An animation segment has information about its kinematic constraints, as were

detailed by the designer or derived automatically as described in Section 4.4.

An example of an annotated track, for a walking motion, is shown Figure 5.14.

As an animation plays through this walk segment, the constraints will

be enforced at the appropriate times. As an animation transitions from one

motion to another using the transitioning mechanism, however, the constraints

need to be arbitrated to yield a reasonable constraint regimen.

160

Figure 5.15: A milling about transition

The kinematic constraint arbitration mechanism used in this dissertation

is a simple one which works reasonably well in practice: constraints at both

ends of the transition are held throughout. Otherwise, constraints in the from

motion MA are enforced in the first half of the transition and constraints in

the to motion MB enforced in the last half. Constraints are eased out when

a constraint period ends. Likewise, constraints can be eased in. Constraint

ease-out keeps the motion “pop” free. Constraints are enforced using the linear

technique described in Section 2.3 weighted by an ease-out period.

Figure 5.15 shows a motion generated for a character as he transitions

from one milling-about motion to another. Note the slight kinematic con-

straint violations of the feet as the transition occurs shown in the left multiple-

exposure picture in the figure. The right picture shows the ik enforced result.

While the foot slide is not large, it can be jarring. Constraints can be used to

avoid small but noticeable indicators of error.

One caveat to this ik arbitration scheme is that body parts need to be

unconstrained every so often. Imagine continuing the milling about animation.

Each motion clip is going to move the root a little bit, unless it was specifically

designed not to. Assuming it does and assuming the feet are never released,

161

the character can end up being far from where its feet are constrained after a

lone period of time. Allowing one foot to shift while the other supports is an

effective and plausible way to deal with this and is accomplished by relaxing

one foot constraint occasionally.

5.6 Gesturing

A gesture is defined as a motion that uses a subset of the dofs and which

does not require the motion of the root. In terms of the composibility rules

introduced in Section 3.9, the root motion can be either defined or unde-

fined but not required. The remaining dofs can be required, defined, or

undefined as appropriate for the gesture.

Being able to compose a gesture asynchronously upon the current primary

action is a powerful notion. It can be used to extend the usefulness of verbs

created for the system and can cut down on the number or complexity of verbs

needed. Instead of needing verbs for walk-with-wave, walk-with-head scratch,

and walk-plainly, one good walk verb plus gestures for wave and head-scratch

are needed. As all the walking variants are more complicated to create than

the gestures, this is already a win. As the waving gesture would be useful with

other base verbs, such as stand-around or sit-down, the total number of verbs

potentially required can be considerably smaller.

Assuming no dof-requirement incompatibility problems, layering a ges-

ture atop another verb requires a smooth transition into the gesture verb and

a smooth transition from it back to the primary action when the gesture is

complete. The same transition mechanism used in Section 5.5 is used here.

Figure 5.16 shows a timeline indicating the weight of the primary verb vs.

gesture verb during the gesture. The “primary” verb in this figure indicates

all the actions which take place in the primary verb queue during the duration

162

primary verb

gesture verb

a=1.0

a=0.0

transition-in transition-out

gesture duration

tin tout

t=0 t=1

Figure 5.16: Primary vs. gesture weight during a gesture

Figure 5.17: A walk verb with the wave gesture overlaid atop it

of the gesture. A walk/wave verb/gesture result is shown in Figure 5.17.

Note that the gestures need not be simple non-parameterized verbs, but

can be complete verbs constructed using the Verbs & Adverbs mechanism or

another such as shown in [26].

163

Algorithm 5.4 Simple gesture positioning

PositionGesture (Gactive, τ
now, τs

G)

{
T active = τnow − τs

G

if T active > Td
G then

mark the gesture verb Gactive no longer active

else

{
tactive = tG (T active)

if (0 ≤ tactive ≤ tin) then

α = U
(

tin − tactive

tin

)

else if (tout ≤ tactive ≤ 1) then

α = U
(
1 − 1−tactive

1−tout

)

else

α = 0

for all defined or required joints j for gesture Gactive

Θj = α · Θj + (1− α) θGj(T
active)

}
}

Algorithm 5.4 shows the steps needed to layer a gesture atop an already eval-

uated primary verb. Gactive is the gesture, τ s
G the animation time the gesture

began and τnow the current animation time for the verb-graph. T active and

tactive is the time spent in the gesture in verb and canonical time. U is the

blending function, typically sigmoid, and α the resulting blending factor. tin

and tout are shown in Figure 5.16.

Multigesture support

One gesture, not surprisingly, is often insufficient. As was detailed in Sec-

tion 6.1, verbs can be used to control things like arm position, mood, or as

164

seen previously, waving. Instead of a single active gesture, therefore, a set

of active gestures is maintained. The only requirement is that they do not

interfere with one another vis-á-vis the composibility rules from Section 3.9.

Algorithm 5.5 Multigesture positioning algorithm

PositionGestures (τnow)

{
for all active gestures Gi which started at τ s

i

PositionGesture (Gi, τ
now, τ s

i)

}

In order for Algorithm 5.5 to function properly, the gestures must be checked

for compatibility. This can be done by ensuring that no two verbs have a

required dof in common. A first-come-first-served approach can be taken

when dealing with conflicts. If any part of the new gesture conflicts with an

old gesture, however, the entire new gesture should be discarded since verbs

and gestures will often do unpredictable things if dofs are simply removed.

Incompatibility with the primary action

A walking verb typically has the following dof requirements: the root and legs

are required, the main body defined, and the face, if present in the skeleton,

undefined. Laying a wave gesture atop this, for instance, is a reasonable

thing to do. The functioning of the basic motion will not be compromised

with this added motion. If the character were to walk up to cliff-face and

begin climbing, however, it would need to stop waving, even if the wave were

only “half-finished”.

Such incompatibilities are determined using the composition rules for the

front verb in the primary verb queue. If the dof requirements for that verb

165

change (or if the verb transitions to a new verb with new dof requirements)

which are incompatible with an active gesture, then that gesture is marked

and a transition from it is begun, even if the normal gesture tout has not been

reached.

5.7 Motion snippets are verbs too

In earlier chapters, the term “verb” has been reserved for rich parameterized

entities, capable of directing the motion of a synthetic actor in a variety of

ways. Examples included the walk, run, and reach. Many verbs which would

be desirable to have in the verb graph, however, do not fit into this form.

A celebrating motion like the one shown in Figure 5.18 is the kind of motion

which would be difficult to design in enough different, but similar ways to yield

a sampled-enough space for verb construction. Verbs like this are quite useful

when designing a system like a game and should be played as is. Including

the entire motion hierarchy in a greater hierarchy of verbs yields a consistent

treatment of examples and verbs and is shown in Figure 5.19. This hierarchy

deals consistently with all of the motion types introduced for this work. As

basic motions, functional motions (like a clip motion), transitions, and verbs

must all support the motion formalism, this leads naturally into an object-

oriented class hierarchy, which is how all the different kinds of motions were

implemented for the Verbs & Adverbs system.

An obvious extension to this idea is to make a place at the table for

other kinds of verbs, like those introduced by Perlin and Goldberg in the

Improv system [112] [113]. As processing power increases, physically simulated

systems [68] [132] can be dealt with similarly, leading to a unified real-time

animation system that makes use of the best aspects of each method.

166

Figure 5.18: Celebrate good times come home

Motion

Functional-forms Basic-motions

Clip

Composition

Concatenation

Time-warp

Mirror

Affine

Selection

Piecewise-linear

B-spline

Hierarchical B-spline

Hierarchical wavelet

Fourier decomposition

Transition

Cyclification

Interpolated-motions

RBF

MRBF

Figure 5.19: The completed hierarchy

167

5.8 Conclusions

This chapter introduced the verb-graph, an object used to structure the overall

flow of an animation. A designer, not the system, determines the logical

places for transitions to occur and designs those transitions using a transition

mechanism introduced in this chapter. Gestures can extend the usefulness

of the verbs and are used for on-the-fly compositing of small motions like

waving. The verb-graph, not the verbs themselves, is the object controlled

by the high-level system such as Perlin or Blumberg’s. Chapter 6 describes a

demo application and verb graph used to test the system.

168

Chapter 6

Results & user study

Chapter 3 introduced examples, time, and the motion formalism. An editing

system, built from the formalism, helps a designer transform motions into

examples. Chapter 4 described both the single- and multi-resolution versions

of the radial B-spline interpolation used in the Verbs & Adverbs system. It also

described a number of issues related to verbs. Finally, Chapter 5 introduced

the verb-graph and transitioning mechanisms. Using these concepts, long,

seamless animations can be constructed from verbs as well as from simple,

non-parameterized motions. This chapter presents results generated using the

methods developed in the previous three chapters. It will also present analyses

of the effectiveness of the system through measurement and user-studies.

6.1 Verbs

A library of motion capture was used to construct a number of different pa-

rameterized verbs: walking, jogging, reaching, and idling. Some verbs, such

as “walk”, have a large number examples representing different emotions such

as happy, sad, angry, clueless, tired, delirious, determined, frenzied, ashamed,

bored, goofy, and grief-stricken, as well as walks at different inclinations and

radius of turn.

169

The data for the example motions discussed here was motion captured

with an Ascension MotionStar (TM) system sampled at 120 Hz. with 15 six

degree-of-freedom sensors positioned on the body. The raw data was prepro-

cessed to fit the rigid body model with hierarchical joint rotations and fewer

dofs that correspond to the limitations of human joints. The methods de-

scribed by Bodenheimer et al. [21] ensure that the motion capture data makes

consistent use of joint angles for redundant dofs, one of the example restric-

tions introduced in Section 3.5. The final model has 40 joint dofs in addition

to six dofs at the root, located between the hips, for global positioning and

orientation.

Walk

A parameterized walk was the first goal of the Verbs & Adverbs project. The

data used for this walk was motion captured from a physical actor, named

Christian. A pair of stills from this motion capture session is shown in Fig-

ure 6.1 showing the depth of expression he was able to produce with his

posture. The walk verb has four adverbs: happiness, knowledge, inclination

(slope), and turning. A sampling of this walk at a particular key-time along

the two emotional axes is shown in Figure 6.2. A sampling of this walk at

different turning radii and levels of happiness is shown in Figure 6.3. In each

of these figures, and in the figures to follow, the green figures were examples

and the yellows some interpolated and extrapolated motions. While only few

synthesized motions are shown, the reader should note that there is an infinite

variety of motions between the examples.

170

Figure 6.1: Christian walking

Reach

A reaching verb was parameterized by the adverbs representing the x, y, and

z offsets of the reach goal from the starting position of the reach. It used

18 examples and has good coverage inside the convex hull of the examples.

The reaching adverbs can be extrapolated 10% beyond the convex hull before

the resulting motion deteriorates unacceptably. A sampling at the reach apex

key-time along x and y axes is shown in Figure 6.4.

Even given an accurate parameterization of the verb’s examples, it is still

not a guarantee that a linear change along the adverbs will produce a linear

change in the resulting motion. Take the reach verb again for an illustration.

This undesirable situation is due to the fact that both articulated figures and

radial basis approximation are non-linear processes. In general, the desired

location of a reach and the actual location will only match exactly at the

examples. Figure 6.5 shows a sampling of the errors in the bounding box of

the example reach points (blue spheres). The green and red spheres indicate

the desired and actual location of a reach for a particular adverb setting p.

Green lines are small errors which blend to red lines for the worst errors.

Note the lower right corner of the figure. The errors near the blue sphere (an

171

knowledge-
able

clueless

sa
d

ha
pp

y

Figure 6.2: A walk sampled across two emotional axes. The green figures are

the example motions. The rest are created through the verb/adverb mecha-

nism.

172

turn
left

turn
right

ha
pp

y
sa

d

Figure 6.3: Emotive turns

173

Figure 6.4: A reach sampled along the x and y axes

174

Figure 6.5: A sampling of reach errors

example) are small. The minimum sampled error (none of the examples were

sampled as they appeared off the sample grid), was 0.00311, or a 0.212% error.

Maximum error was 0.13576, or 9.68%. Average error was 0.0453, or 3.12%.

There are a number of ways to solve this problem, assuming an average

3.12% error is unworkable. The simplest solution is to use ik as we did earlier

for foot support constraints. As these errors are small, a simple ik solution will

converge very quickly to a solution, possibly in 1 iteration. Another way is to

use more example reaches. Errors near the examples are lower, so blanketing

the space with more examples will yield an overall improvement in parame-

175

Figure 6.6: Comparison of raw versus reparameterized reaching. The spike

closer to zero for the reparameterized verb indicates lower overall error.

terization. As evaluation time grows linearly with number of examples, this

may not be a workable solution if the number of examples required to achieve

a desired error tolerance was high. Also, examples are precious and may not

be available in abundance. Another solution is to reparameterize the adverb

space in order to achieve a more linear solution. While this is still an active

area in our research program, I’ll detail a simple non-general solution for this

3-D verb. It should be stressed that it is not a general n-D solution and is

exponentially costly in terms of storage.

The error sampling used in Figure 6.5 is a regular lattice of error vectors.

Any given set of adverbs, p, within the bounding box of the samples will fall

within one of the boxes in this lattice. Blending the errors of this box with

multi-target interpolation yields an interpolated error vector, v, so p− v will

project to a place in the parameterization will likely lower the error of the

desired parameterization. We performed this test which yielded the follow-

ing minimum, average, and maximum error percentages: 0.015%, 0.61%, and

2.8% respectively, a marked improvement over the non-reparameterized reach.

A histogram showing the distribution of errors for the raw parameterization

and the reparameterized approach is shown in Figure 6.6. Note that the repa-

rameterized motion has many more error samples near zero with a much lower

frequency of high errors.

Linearizing emotional adverbs is much more difficult due to the subjective

nature of the adverbs. A skilled designer, however, will do this as part of the

refinement loop introduced in Section 4.5 using the improved mechanism from

Section 4.6.

176

Jog

A jog was constructed from two examples, a run straight ahead and a run to

the right. It is an instructive instance that shows the power of the editing

system built on top of the motion formalism from Chapter 3. Jogs are difficult

to motion capture, especially with a tethered system like the MotionStar (TM).

The goal for this verb was a jog that could run to the left, right, straight

ahead, or anywhere in-between. The two examples captured from the motion

capture system were a neutral run forward and a run to the right. A sim-

ple mirror (Definition 5) operation yielded a run to the left. The key-times,

however, then become wrong as the mirror operation changes the usage of the

feet. A run beginning on the left foot becomes one from the right foot once

mirrored. As the overall length of the jog sample was short, a simple clip

(Definition 2) was insufficient. A cyclification step (Section 3.10) on the mir-

rored walk, followed by a concatenation (Definition 7) and a clip yielded the

third example. The relationships among the examples is shown in Figure 6.7.

Results of the jog verb are shown in Figures 6.8 and 6.9.

Milling about

A set of three controlled idles was constructed. A sampling of one is shown

in Figure 6.10. While some emotional content is covered in pose (note the

difference in the back), these verbs depend most heavily on phrasing.

6.2 Verb-graphs

A simple application was generated to test the verb and verb graph mecha-

nisms. Figure 6.11 shows the system. The upper left shows a simple control

system for indicating mood (face), direction (slider), and command over pri-

177

Jog-forward

Jog-to-left Mirror

Cyclify

ConcatenateClip

Examples Intermediate Steps

Figure 6.7: Three examples from two basis motions

178

Figure 6.8: A jogging verb

Figure 6.9: The jogging verb from overhead

179

sad happy

Figure 6.10: A sampling of an idle motion

Figure 6.11: Demo application

mary and gesture verbs (buttons). The middle is the view upon the virtual

world in which the character is placed. Far right shows the verb graph and its

current state. The currently executing verb is in red.

A discrete event simulator serves as the runtime system’s main loop. This

system tracks the clock and sequentially processes events placed on its event

queue. Each event has a time stamp and an associated callback function. The

system inserts events in the event queue (in time stamp order) and processes

them by invoking the callback function with the time stamp as a parameter.

Events may be one of three types: normal, sync, or optional. The system

processes normal events as they are reached in the queue, independent of the

relative values of the time stamp and the clock. Sync events wait for the clock

to catch up to the time stamp if the clock time is less than the time stamp;

they execute immediately otherwise. The system skips optional events if the

180

clock has passed the time stamp; otherwise, optional events act like normal

events.

The most common events are “render” and “display” events. A render

event evaluates the dofs at the time indicated by the time stamp to set the

creature’s pose, then renders (but does not display) an image. The render

event has the “normal” flag and thus creates an image as soon as the event

reaches the fore of the queue. A display event with the same time stamp

but with a sync flag waits for the clock to reach the time stamp and then

displays the rendered image. The render event also measures the amount of

clock time between frames and estimates the best time stamp for the next

render or display events and inserts them into the event queue. This way, the

frame rate dynamically adjusts to the computational load.

The verb graph used for the demo system is shown in Figure 6.12. Gray

nodes are simple verbs. Blue nodes are parameterized ones and are annotated

by their axes in italic and the number of constituent example motions. Tran-

sition likelihoods separate the graph into different regions indicated by the

dashed lines. The verb graph will never automatically shift from a jog to a

walk or idle unless told to do so by a higher level entity such as the runtime

system or user due to these transition likelihoods, i.e. transitions crossing

the boundaries are given a likelihood of zero, so they are never automatically

chosen. The system randomly perturbs the parameters and verb queue if left

untouched for too long.

This application allows the character to stand around, navigate around

the world through walking or jogging, and interact with the world through

reaching. The user or system can invoke gestures, such as a wave.

The verb-graph and verbs/adverbs mechanisms can be run at high frame

rates. On a Pentium-Pro 200MHz machine (a 1996 generation machine), the

181

raw frame rate is approximately 240 frames per second with inverse-kinematics

turned on or 800 fps without. Verbs & Adverbs is bound primarily by the ren-

dering performance of the graphics card. As detailed in Chapter 4, the Verbs

& Adverbs mechanism is space efficient. The number of coefficients needed is

within a factor of 2 the total number of coefficients needed to store the exam-

ple motions. The added storage for verb-graph objects, such as transitions, is

negligible.

6.3 User study

Quantifying the effectiveness of a technique which grants aesthetic control is

difficult. Often in computer graphics, the “looks good to me, does it look good

to you” test is used. In this section, a user study will be introduced which

seeks to measure the qualitative aesthetic aspects of the system along with the

results of these tests.

As was described in Chapter 4, the system produces a set of verbs which

are controllable by a set of aesthetic and structural axes, i.e., the adverbs.

Our test judges the effectiveness of the technique at generating plausible

motions. Rather than test directly whether a motion looks plausible, which

would be more likely to judge the effectiveness of the animator or motion

capture system, the ability of an observer to discern example from interpolated

motion is judged.

This test, a line-up, will be structured as follows. The subject is shown

a series of line-ups, such as shown in Figure 6.13, of characters performing

similar motions, one of which is an example. The subject is asked to rate

the motions on a scale of 1 to 5, using each rating once. They are told that

one is motion capture and to rate the motions from 1 (least natural) to 5

(most natural). The motion captured examples are natural looking and will

182

Reach
X
Y
Z

Hand-on-hips
Happiness
Knowledge

Arms-crossed
Happiness
Knowledge

Idle-combo
Happiness
Knowledge

Take-a-rest/stretch

Scratch-head

Fidget

Idle

Stop-walkingStart-walking

Walk
Happiness
Knowledge

Turning
Slope

Jog
Turning

3

10

4

4

4

18

Figure 6.12: The final verb graph for the demo application

183

Figure 6.13: A line-up

be easily identifiable unless the Verbs & Adverbs mechanism does a good job

of synthesizing natural looking motions.

Twenty test subjects were asked to rate four line-ups, two walking and

two reaching. Four of the five motions in each line up were generated from

randomly selected adverb values within an expanded bounding box in adverb

space. This box was 20% bigger than the actual bounding box containing

all of the examples. This allowed for extrapolations as well as interpolations.

Complete success would correspond to a random distribution of ratings for the

real motion, i.e. approximately 20% of the examples rated as 1, 2, etc.

User ratings for the examples of the walking verb are shown in Table 6.1.

The table shows the values assigned to the examples by the test subjects. If

the motion captured ones were completely obvious, then 100% of them would

be assigned 5. The table shows that Verbs & Adverbs does far better than

that. Less than 20% were rated as 5, but 47% were rated either 4 or 5 (the

two most natural ratings), showing that the examples are on average slightly

better than the synthesized motions. The synthesized walks, however, were

convincing. The results for the reaching motion are less compelling and work

will need to be done in order to improve it. User ratings are shown in Table 6.2.

42% of the examples were rated as 5 and another 22% rated as 4.

6.4 Conclusions

This chapter presents a synopsis of the results of the Verbs & Adverbs project

to date. A collection of verbs was shown, with notes on the examples needed to

make them. An analysis of reach effectiveness was shown. The verb-graph and

demo application used to showcase the system were also described. Finally,

184

1 25%

2 16.7%

3 11.1%

4 27.8%

5 19.4%

Table 6.1: Distribution of user-study ratings for the real walking verb example.

“5” represents what the user perceived as “most natural”. If our system were

unable to generate convincing motion, all motion-captured examples would

receive a “5”.

1 8.3%

2 13.9%

3 13.9%

4 22.2%

5 41.7%

Table 6.2: Distribution of user-study ratings for the real reaching verb exam-

ple. “5” represents what the user perceived as “most natural”. If our sys-

tem were unable to generate convincing motion, all motion-captured examples

would receive a “5”.

185

a user-study showing the effectiveness of the technique was performed and

analyzed.

186

Chapter 7

Conclusions & future directions

This dissertation presented a technique for constructing controllable animation

segments from sets of similar animation data, called “examples”. Each control-

lable segment performs a specific task, such as running, walking, or reaching

with a particular hand. We call these succinct units “verbs”. Their control

parameters define an infinite space of variation for these verbs; we therefore

call them “adverbs”. Chapter 3 describes the processing of raw animation

data into examples.

Example motions are encoded using curves that are themselves commonly

represented using summed basis functions weighted by coefficients. Control-

lable motions, therefore, can be generated using parameterized coefficients.

Chapter 4 describes in detail the multi-resolution radial B-spline interpolation

scheme used by Verbs & Adverbs. Time-warping example data ensures the

interpolation is performed between moments with similar meaning.

Chapter 5 described one way of generating seamless animations of inde-

terminate length using the short verb segments. A transition scheme that can

bridge two verbs leads to a verb-graph, an object which controls the overall

flow of a reactive real-time animation.

Finally, results using the system were detailed in Chapter 6. An analysis of

a small user study showing the effectiveness of Verbs & Adverbs was included.

187

Additionally, an analysis of the reach verb showed that the system can be used

to effectively and efficiently simulate inverse-kinematics on a figure of known

topology without the problems commonly associated with ik.

The Verbs & Adverbs system is a promising technique for realizing the

goal of compelling interactive 3D human figure animation. It is, however, just

one piece of a complete system.

7.1 Integration with other techniques

Verbs & Adverbs presents an interpolated technique, and as such is subject to

the limitations of such methods. Inverse kinematics constraints were found to

be useful in augmenting the effectiveness of the interpolations, especially for

things like foot supports. Other animation traditions could prove useful to the

system. Interpolation, for example, can cause the figure to move in ways not

plausible or comfortable for a real human. The balance and biomechanics work

mentioned in Chapter 2 could be integrated to further improve the effectiveness

the system.

Integration with procedural work like Perlin’s, or dynamical simulation,

like Hodgins’, could be useful. Perlin’s use of noise, for example, increases

the believability of a motion could be easily integrated with Verbs & Adverbs.

Some tasks are naturally well suited to procedural or dynamical methods such

as procedural head turns or gazes or dynamical balancing. Such techniques

could augment the Verbs & Adverbs system and help create a more convinc-

ing real-time animation system. Standards efforts like hanim [5] could be a

facilitating event making such integration more possible.

Higher level control has not been addressed in this dissertation. Even the

verb graph, which abstracts some of the lower level problems, is not high level

control scheme. A high level controller is the object that studies the state of

188

the world and then controls the verbs and adverbs to achieve a goal. High

level control, for instance, may involve planning a course, such as through

a maze, and then direct the actor along that path, dealing with unforeseen

circumstances as they arise. Animation generated with Verbs & Adverbs could

be used by a system like Perlin’s Improv or those developed in Blumberg’s

Synthetic Character Group at mit’s Media Lab. Motivate (TM), a product of

The Motion Factory, could also prove a useful system for driving Verbs &

Adverbs-based animation segments.

7.2 Skinning & musculature animation

Hodgins, O’Brien, and Tumblin [67] describe some tests indicating viewers of

animation systems have difficulty discriminating between subtle differences in

animation when the characters are represented as simple models, such as lines.

“Models” here refers to the graphical representation of a figure. Hodgins,

et. al. showed that accurate depictions of human figures are superior to

simple models, leaving open the question of whether viewers can discriminate

differences on a model somewhere between these two extremes. Despite this,

their work is compelling enough that the Verbs & Adverbs system will soon

include more realistic human figures.

This dissertation showed how multi-resolution radial B-spline interpola-

tion could lead to motion synthesis. The mrbf formulation, however, will

likely prove useful in many areas of computer graphics, as did wavelets in

recent computer graphics history. Skinning, for example, is an obvious candi-

date and is particularly complementary to the motion work. Artist directed

skinning, parameterized by joint angle, effort, emotion, and physical statistics

could prove a very effective way to improve one of the worst aspects of human

figure animation: the disturbing nature of our models, which appear more like

189

mannequins than living beings.

7.3 Facial animation

Finally, there has been much work recently on facial animation. Guenter,

Grimm, et. al. showed how facial expressions could be synthesized from

examples in [61], thus allowing for very low-bandwidth transmission of high-

quality faces. Pighin et. al. also used blended examples to form high-quality

facial animation in [115].

DeCarlo et. al. showed how human anthropometry data could be used

to generate parameterized facial models in [39]. Large quantities of accurate

anthropometry data combined with an interpolation method such as mrbf

may be the key highly adaptable human figure models. Current anthropometry

efforts by the U.S. military might prove useful in a few years as the data

becomes available.

7.4 Open issues

The Verbs & Adverbs project is now seeking to work more extensively with

animators. Through further collaboration, we seek to understand what things

an artist finds empowering or limiting, intuitive or frustrating about Verbs &

Adverbs. How easily do animators grasp, for example, the notion of an n-D

adverb space of largely independent adverb axes?

The Verbs & Adverbs system is currently a loose collection of tools, a

circumstance that slows the verb refinement loop. This loop is the process the

animator uses to work with the system, so it is important that overhead not

hamper the artist. One investment we plan to make is to improve the authoring

system, perhaps through integration with a commercial 3-D package such as

190

3D-Studio/Max (TM) or SoftImage (TM).

In addition to improving Verbs & Adverbs for use in animation, we also

intend to discover where else mrbf interpolation may prove applicable. That

process may uncover deficiencies in the interpolation mechanism. Improve-

ments in the basic interpolation as well as in clustering may be needed in

order to use the technique in other problem domains. Non-spherical radial

bases, for example, are one possible avenue to explore.

Reparameterization of the adverb space is likely to prove important. A

walking verb, for example, may need to be individualized. A saddened person

may have a hunched back, but so also might a perfectly happy older person.

Without changing the walk, individualization might be accomplished through

reparameterization. It will also likely prove useful for linearizing the naturally

non-linear nature of adverbs for problems such as reaching (Chapter 6).

191

Appendix A

The motion formalism

This appendix synopsizes the motion formalism, which was developed in Chap-

ter 3, Section 3.8.

A motion Mi is an object which can respond to a number of questions

posed to it. The primary question is of dof position, θi(T), meaning “what

are the values for the dofs for motion i and time T”, where T is expressed in

verb-time as defined in Section 3.4. This is a syntactic simplification for the

sake of making this formalism less cluttered, but could be expressed in a more

general form: θ(Mi, T), meaning “apply the position operator to motion Mi

at T”.

The data items a motion must be able to supply were detailed in Table 3.1,

but are repeated here in Table A.1. Likewise, the full set of questions a motion

must be able to answer were first introduced in Table 3.2, but are repeated

here in Table A.2. Figure 3.21 first introduced the full complement of motion

types used in the Verbs & Adverbs system. It has been expanded to include

the motions introduced in Chapters 4 and 5 and appears in Figure A.1.

This appendix will proceed by introducing each of the motion types devel-

oped in Chapters 3, 4, and 5, very briefly and will then show how the motion

formalism is implemented. This appendix is not meant to re-describe the ra-

tionale behind these implementations, but rather provide a concise reference.

192

data-item values description

Kim [0 . . . +∞) mth key-time for motion Mi

τ s
i (−∞ . . . +∞) start-time of motion Mi

τ e
i (−∞ . . . +∞) end-time of motion Mi

Td
i [0 . . . +∞) duration of motion Mi

pi <NumAdverbs adverb values for motion Mi

Table A.1: Basic motion values: key-times, time-bounds, duration, and ad-

verbs

Motion

Functional-forms Basic-motions

Clip

Composition

Concatenation

Time-warp

Mirror

Affine

Selection

Piecewise-linear

B-spline

Hierarchical B-spline

Hierarchical wavelet

Fourier decomposition

Transition

Cyclification

Interpolated-motions

RBF

MRBF

Figure A.1: A hierarchy of motion types

The reader should refer to the chapter and section indicated to find more out

about a particular motion type.

A.1 Basic motion

The basic motions form the right-most sub-tree in the motion hierarchy shown

in Figure A.1. These are simple motions described by a set of curves supplied

by the motion designer most likely through motion capture or hand animation.

Basic motions were first introduced in Section 3.8 by Definition 1 as

basic motion Mi =
{
Ki, Ii,pi, T

d
i , Ci

}

193

function result range description

τi(T) τ (−∞ . . . +∞) verb-time to animation-time

Ti(t) T [0 . . . +∞) canonical-time to verb-time

ti(T) t [0 . . . 1] verb-time to canonical-time

θij(T) position < return dof positions

θ̇ij(T) velocity < return dof velocities

θ̈ij(T) acceleration < return dof accelerations

Dij(T) dof-usage {required, return dof usage

defined on a dof-by-dof basis

undefined}
Ii(T) constraints ik constraints active at T

Table A.2: Motion functions: time projections and kinematic operators

where the key-times Ki, constraints Ii, adverbs by pi, duration Td
i , and dof-

curves Ci are all user-supplied values. Ci is a collection of dof-curves for some

or all of the possible dofs encoded using any curve representation which can

respond to position, velocity, and acceleration queries.

Basic motions implement the formalism as follows:

τ s
i = 0

τ e
i = Td

i

Td
i = designer supplied

Kim = designer supplied

194

pi = designer supplied

τi(T) = T

Ti(t) = Refer to Equation 3.2

ti(T) = Refer to Equation 3.1

θij(T) =

Cij(T) Dij(T) = required

0 otherwise

θ̇ij(T) =

Ċij(T) Dij(T) = required

0 otherwise

θ̈ij(T) =

C̈ij(T) Dij(T) = required

0 otherwise

Dij(T) =

required ∀ dofs j in Ci

undefined otherwise

Ii(T) = designer supplied

A.2 Clip motion

A clip motion extracts a short piece from a longer piece of animation. It was

first introduced in Section 3.9 and by Definition 2 as

clip motion Mi = {tsi′ , tei′ ,Mi′}

where tsi′ and tei′ mark the start and stop region of the clip in the canonical

timeline of motion Mi′ .

195

The clip motion implements the motion formalism as follows:

τ s
i = 0

τ e
i = Td

i

Td
i = Ti′(t

e
i′)− Ti′(t

s
i′)

Kim = Ki′m′ − Ti′(t
s
i′)

pi = pi′

τi(T) = T

Ti(t) = Refer to Equation 3.2

ti(T) = Refer to Equation 3.1

θi(T) = θi′(T + Ti′(t
s
i′))

θ̇i(T) = θ̇i′(T + Ti′(t
s
i′))

θ̈i(T) = θ̈i′(T + Ti′(t
s
i′))

Di(T) = Di′(T + Ti′(t
s
i′))

Ii(T) = Ii(T + Ti′(t
s
i′))− constraints excluded by the clip

A.3 Affine motion

An affine motion Mi shifts and scales another motion Mi′ in time. It was first

introduced in Section 3.9 and by Definition 3 as

affine motion Mi = {τ s
i , s,Mi′} , s > 0

where τ s
i is the moment in animation-time when the motion is set to begin

and s a scaling factor which changes the overall duration of the motion.

196

The motion formalism is implemented using the following formulae:

τ s
i = designer supplied

τ e
i = τ s

i + Td
i

Td
i = s · Td

i′

Kim = s ·Ki′m

pi = pi′

τi(T) = τ s
i + s · T

Ti(t) = s · Ti′(t)

ti(T) = Refer to Equation 3.1

θi(T) = θi′

(
T

s

)

θ̇i(T) = θ̇i′

(
T

s

)

θ̈i(T) = θ̈i′

(
T

s

)

Dij(T) = Di′j

(
T

s

)

Ii(T) = Ii′

(
T

s

)

A.4 Time-warp motion

A time-warp motion Mi distorts the natural timeline of another motion Mi′

using a time-warping function specified by the designer. It was first introduced

in Section 3.9 and by Definition 4 as

time-warp motion Mi = {U ,Mi′}

where U is a monotonically increasing function with domain and range [0..1].

The U function warps the relative duration of the segments of the motion.

197

The motion formalism is implemented as follows:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

Kim = Td
i · U

(
Ki′m

Td
i

)

pi = pi′

τi(T) = T + τ s
i

Ti(t) = Refer to Equation 3.2

ti(T) = ti′

(
T + U

(
T

Td
i

))

θi(T) = θi′

(
Td

i · U
(

T

Td
i

))

θ̇i(T) = θ̇i′

(
Td

i · U
(

T

Td
i

))

θ̈i(T) = θ̈i′

(
Td

i · U
(

T

Td
i

))

Dij(T) = Di′j

(
Td

i · U
(

T

Td
i

))

Ii(T) = Ii′

(
Td

i · U
(

T

Td
i

))

A.5 Mirror motion

A mirror motion Mi of a motion Mi switches the left-right direction and body

motion. It is useful for changing a walk to the right, for example, into a walk

to the left. It was first introduced in Section 3.9 and by Definition 5 as

mirror motion Mi = {A, S,Mi′}

where motion Mi′ is the motion to be mirrored and A and S are sets of dof

pairs {j, j′} which are anti-symmetrical and symmetrical.

198

The motion formalism for the mirror motion is implemented as follows:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

Kim = Ki′m

pi = pi′

τi(T) = τi′(T)

Ti(t) = Ti′(t)

ti(T) = ti′(T)

θij(T) =

θi′j′(T) ∀ symmetry pairs {j, j′} ∈ Mi

−θi′j′(T) ∀ anti-symmetry pairs {j, j′} ∈ Mi

θi′j(T) otherwise.

θ̇ij(T) =

θ̇i′j′(T) ∀ symmetry pairs {j, j′} ∈ Mi

−θ̇i′j′(T) ∀ anti-symmetry pairs {j, j′} ∈ Mi

θ̇i′j(T) otherwise.

θ̈ij(T) =

θ̈i′j′(T) ∀ symmetry pairs {j, j′} ∈ Mi

−θ̈i′j′(T) ∀ anti-symmetry pairs {j, j′} ∈ Mi

θ̈i′j(T) otherwise.

Dij =

Di′j′(T) ∀ symmetry and anti-symmetry pairs {j, j′} ∈ Mi

Di′j(T) otherwise.

Ii = Ii′ modified by the symmetry and anti-symmetry pairs

199

A.6 Composition

Motion compositing overlays multiple motions to create a gestalt motion from

the pieces. It was first introduced in Section 3.9 by Definition 6 as

composition motion Mi = {pi,Mi0 ,Mi1 , . . .Min}

where the Mic ’s are the motions to be composed with one another. The adverb

value pi is designer specified since there is no reasonable procedural way to

assign an overall adverb value to a motion composed of many different motions

with many different, and potentially conflicting, adverbs settings.

The motion formalism is implemented as follows:

τ s
i = min

c
τ s
ic

τ e
i = max

c
τ e
ic

Td
i = τ e

i − τ s
i

Kim = τic(Kicm′)− τ s
i

τi(T) = T + τ s
i

Ti(t) = Refer to Equation 3.2

ti(T) = Refer to Equation 3.1

pi = designer specified

θij(T) = Arbitrate (θi0j(Ti0), θi1j(Ti1), . . . , θinj(Tin))

θ̇ij(T) = Arbitrate
(
θ̇i0j(Ti0), θ̇i1j(Ti1), . . . , θ̇inj(Tin)

)

θ̈ij(T) = Arbitrate
(
θ̈i0j(Ti0), θ̈i1j(Ti1), . . . , θ̈inj(Tin)

)

Dij(T) = max
c
Dicj(T)

Ii =
⋃
c

Iic(T)

where Tic = Tic (τi(T)).

200

A.7 Concatenation

Concatenation places a number of motions one after another on the timeline to

create a longer sequence. It was first introduced in Section 3.9 by Definition 7

as

concatenation motion Mi = {pi,Mi0 ,Mi1 , . . .Min}

where the Mic ’s are the motions being concatenated in order from 0..n. Like

the composition motion, the overall adverb value is specified by the designer

as pi.

The motion formalism is implemented as follows:

τ s
i = 0

Td
i =

n∑
c=0

T d
ic

τ e
i = Td

i

Kim =

Kinm′ +
∑n−1

c=0 T d
ic n > 0

Ki0m′ otherwise

pi = Designer supplied

τi(T) = T

Ti(t) = Refer to Equation 3.2

ti(T) = Refer to Equation 3.1

θi(T) = θic(T − Telapsed)

θ̇i(T) = θ̇ic(T − Telapsed)

θ̈i(T) = θ̈ic(T − Telapsed)

Dij(T) = Dicj(T − Telapsed)

Ii(T) = Iic(T − Telapsed)

201

where

Telapsed = T −
n−1∑
c=0

T d
ic

and where n is the maximum n which satisfies

n−1∑
c=0

T d
ic ≤ T.

If no n satisfies, then the first motion has not yet been exhausted, so Telapsed =

T . Motion Mic is the motion active at the verb-time T in question.

A.8 Selection

A selection type motion Mi modifies the dof-usage function, D, of another

motion Mi′ . It was first introduced in Section 3.9 by Definition 8 as

selection motion Mi = {Mi′ , {j, usage}∗}

where Mi′ is the motion having its dof-usages adjusted and usage either

undefined, defined, or required. The motion formalism is easily imple-

mented for this motion as:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

Kim = Ki′m

pi = pi′

τi(T) = τi′(T)

Ti(t) = Ti′(t)

ti(T) = ti′(T)

202

θij(T) =

θi′j(T) ∀ dofs not undefined

0 otherwise

θ̇ij(T) =

θ̇i′j(T) ∀ dofs not undefined

0 otherwise

θ̈ij(T) =

θ̈i′j(T) ∀ dofs not undefined

0 otherwise

Dij(T) =

undefined ∀ dofs j undefined by the selection

defined ∀ dofs j defined by the selection

required ∀ dofs j required by the selection

0 otherwise

Ii(T) = Ii′(T)− those involving undefined dofs

A.9 Cyclification

A cycle motion Mi transforms a motion Mi′ into one which is perfectly cyclic,

so that no discontinuities occur if the motion is repeated. It was first intro-

duced in Section 3.10 by Definition 9 as

cycle motion Mi = {ci,Mi′}

where ci is a vector of booleans indicating which dofs are cyclified. Remember

that the root Z translation is typically not-cyclified. Using the boolean vector

generalizes that notion. Implementing the motion formalism is as follows:

τ s
i = τ s

i′

τ e
i = τ e

i′

Td
i = Td

i′

203

Kim = Ki′m

pi = pi′

τi(T) = τi′(T)

Ti(t) = Ti′(t)

ti(T) = ti′(T)

θij(T) =

θi′j(T) cij false

θi′j(T) +
T ·dij

Td
i
− dij

2
cij true

where dij = θi′j(T
d
i′)− θi′j(0)

θ̇ij(T) =

θ̇i′j(T) cij false

θ̇i′j(T) +
T ·dij

Td
i
− dij

2
cij true

where dij = θ̇i′j(T
d
i′)− θ̇i′j(0)

θ̈ij(T) =

θ̈i′j(T) cij false

θ̈i′j(T) +
T ·dij

Td
i
− dij

2
cij true

where dij = θ̈i′j(T
d
i′)− θ̈i′j(0)

Dij(T) = Di′j(T)

Ii(T) = Ii′(T)

A.10 Transition

A transition motion Mi bridges the gap between to motions MA and MB. It

was first introduced in Section 5.5 by Definition 10 as

transition motion Mi = {α,MA, tsA, teA,MB, tsB, teB}

where α is the blending function as defined previously, MA and MB, the

motions being blended from and to respectively, and [tsA . . . teA] and [tsB . . . teB]

the blending regions in the two motions expressed in canonical time.

204

The motion formalism is implemented as follows:

τ s
i = 0

τ e
i = Td

i

Td
i =

(T e
A − T s

A) + (T e
B − T s

B)

2

Kim = any key-times KAm,KBm in the blend regions for MA and MB

pi = assigned by the designer or blended from MA and MB

τi(T) = T

Ti(t) = Refer to Equation 3.2

ti(T) = Refer to Equation 3.1

θij(T) =

(1− α(t))θAj (T + T s
A) + α(t)θBj (T + T s

B)

for non-root dofs i
∫ t

t′=0
(1− α(t′))θ̇Aj (T ′ + T s

A) + α(t′)θ̇Bj (T ′ + T s
B)

otherwise

θ̇ij(T) = (1− α(t))θ̇Aj (T + T s
A) + α(t)θ̇Bj (T + T s

B)

θ̈ij(T) = (1− α(t))θ̈Aj (T + T s
A) + α(t)θ̈Bj (T + T s

B)

Dij(T) =

DAj(T + T s

A) ti(T) ≤ 0.5

DBj(T + T s
B) otherwise

Ii(T) =

IA(T + T s

A) ti(T) ≤ 0.5

IB(T + T s
B) otherwise

A.11 Verbs

The verb is the central object in this thesis. A full description of its workings

is can be found in Sections 4.3 and 4.6. Its definition is

verb motion Mi =
{Di, Ii,Mi′

+
}

205

where the Mi′
+ are the example motions as detailed in Chapters 3 and 4. There

must be at least NumAdverbs + 1 examples in order to establish a baseline

interpolation for a motion with NumAdverbs adverbs. Some of mechanisms

for verbs are too complicated to be shown here in a compact form, so the

motion formalism will refer the reader back to the appropriate sections when

necessary. Otherwise, the motion formalism is implemented as:

τ s
i = 0

τ e
i = Ki,NumKeyTimes see below and Section 4.3

Td
i = τ e

i − τ s
i

Ki0 = 0

Kim =
NumAdverbs∑

l=1

almAl(pi) +
NumClusterLevels∑

c=0

NumExamples∑

i′=0

rc,i′mRc,i′(pi)

pi = Variable; used to control verbs and is set at run time

τi(T) = T

Ti(t) = Refer to Equation 3.2

ti(T) = Refer to Equation 3.1

θij(T) = f(bjk(pi)) Refer to Section 4.3

θ̇ij(T) = ḟ(bjk(pi)) Refer to Section 4.3

θ̈ij(T) = f̈(bjk(pi)) Refer to Section 4.3

Dij(T) = Designer specified at verb construction time

Ii(T) = Designer specified at verb construction time

206

Appendix B

Dynamics equations &

torque-minimal transitioning

As stated in Chapter 2, our siggraph paper Efficient Generation of Motion

Transitions Using Spacetime Constraints [124] used Balafoutis and Patel’s [8]

linear recursive dynamics formulation for spacetime optimization for motion

transitions for a human figure with 44 dofs. Quality transitions enable the

joining of two segments of motion capture or hand animated source. The

intuition for torque minimal transitioning is from Burdett, Skrinar, and Si-

mon [27]. Joint torques, they found, are a reasonable predictor of metabolic

energy. Experience has shown that motion which minimizes metabolic energy

looks natural. This leads to the minimization problem:

minimize e =

∫ τ2

τ1

∑
j

Ej(τ)2dτ (B.1)

where Ej is the energy function for the jth dof. This appendix will describe

that minimization process, will detail the equations in the Balafoutis formula-

tion and their derivatives, and will show examples of spacetime transitioning.

Please note that this appendix will use a different scheme than the rest

of the thesis for terms and subscripts. This is to keep it in line with [124] in

addition to Balafoutis and Patel [8].

207

Representations used in the past for the dof function,

q(τ) = (q1(τ), . . . , qn(τ))

where qj(τ) is the value of dof j at time τ , include piecewise constant [147],

B-splines [35], and B-spline wavelets [91]. B-spline wavelets show good conver-

gence properties for spacetime optimization when the number of basis func-

tions in a single degree of freedom is large, e.g. more than 20 or 30. Since

transitioning generally involves a short amount of time, on the order or 1 sec-

ond or less, good paths can be represented with 5 to 10 B-spline coefficients.

Our experience has been that very few iterations are required to achieve con-

vergence with a B-spline basis, so the extra complexity and computation f

the B-spline wavelet basis was not justified. For these reasons, we use cubic

B-splines as the basis functions for q(τ).

We use the bfgs optimization algorithm [53] to find a minimum of integral

of Equation B.1. bfgs belongs to the class of quasi-Newton algorithms which

progress toward a solution by using the gradient of the objective function

g = ∇e.

The gradient is used to incrementally update a matrix decomposition of a

psuedo-Hessian matrix, H, and to compute a new step direction

d = −H−1g

The relative amount of computation for each subtask required at every itera-

tion of the algorithm is common to several quasi-Newton algorithms: gradient

computation, pseudo-Hessian, and computation of the step direction.

Since each of the Ej is potentially a function of all the q, q̇, and q̈, the

gradient requires the evaluation of O (n2) partial derivatives where n is the

number of dofs in the body. This is in fact a lower bound for the asymptotic

208

time complexity of spacetime algorithms which use gradient-based optimiza-

tion techniques.

If m is the number of B-spline coefficients used to define the time function

of each degree of freedom then the pseudo-Hessian is a square matrix with nm

rows and columns. The update of the pseudo-Hessian and computation of the

step direction are both O
(
(nm)2). For m small, less than 20, and n large,

more than 30, the time required to compute g dominates all other computation

thus an efficient formulation for g will pay the greatest dividends in reducing

computation.

Computing g requires finding the joint torques and a variety of subsidiary

quantities, such as angular velocity and acceleration. This is the inverse dy-

namics problem which has been extensively studied in the robotics literature.

Balafoutis provides a good overview of many of these algorithms in his book.

Many inverse dynamics formulations have been proposed ranging from O (n4)

non-recursive to O (n) recursive algorithms. The inverse dynamics formula-

tion we use was developed by Balafoutis and Patel. It is an O (n) recursive

one which requires 96n − 77 multiplications and 84n − 77 additions to solve

the inverse dynamics problem for a articulated figure with n dofs. This is

faster than the O (n) Legragian recursive formulation developed by Holler-

bach [76] which was used by Liu and Cohen [89] which requires 412n − 277

multiplications and 320n− 201 additions.

The efficiency of Balafoutis and Patel’s formulation derives from the com-

putation efficiency of Cartesian tensors and from the recursive nature of the

computations. These efficiencies carry over to the computation of the gradi-

ent terms. The algorithm proceeds in two steps. In the first step velocities,

accelerations, net torques, and forces at each dof are computed starting from

the root dof and working out to the tips of all the chains in the tree. In

209

Figure B.1: End position of motion 1 and beginning position of motion 2 for

a transition

the second step, the joint torques are computed starting from the tips of the

chains back to the root dof. Integrating over the transition yields the overall

energy, which is minimized using the bfgs optimization algorithm.

B.1 Results

We successfully applied the motion transition algorithm on many motions.

Figure B.1 shows the endpoints of the motions being bridged. For this ex-

ample, the transition time was set to 0.6 seconds and the number of B-spline

coefficients to 5. The resulting transition is shown in Figure B.2. Our experi-

ence has been that successful transitions are quite short, usually in the range

of 0.3 to 0.6 seconds. Without a biomechanical model to guide the generation

of a large motion, our minimal energy model will often prove insufficient.

The beginning of the transition is colored blue and the end is colored red

with intermediate times a linear blend of the two colors. The motion is one

transition from a longer animation which has 5 transitions between 6 motions,

shown in Figure B.3. Inverse-kinematics is used to augment the effectiveness

of the transitioning technique as shown in Figure B.4.

Figure B.5 shows an example of a motion transition which affects only

the arm degrees of freedom of the motion. This sequence actually consists of

210

Figure B.2: Multiple time exposure of transition generated from the motions

in Figure B.1

Figure B.3: The complete animation with 5 transitions between 6 different

motions

211

Figure B.4: Inverse-kinematics is used to improve the placement of the feet

during transitions

two torque-minimal transitions: one from a walking arm motion to the salute

motion and another back to the walking arm motion. Each transition was 0.3

seconds long.

Computation times for transitions are strongly dependent on the num-

ber of dofs involved since the spacetime formulation we use is O (n2) in the

number of degrees of freedom. For the transition of Figure B.2 generating

the spacetime transition motion took 72 seconds. This transition involved

44 dofs. For the transition of Figure B.5 generating the spacetime transition

took 20 seconds. All timings were performed on a 100 MHz Pentium processor.

Spacetime transitions are more costly to generate than transitions gen-

erated with joint angle interpolation techniques. They often produce better

results, however. One type of motion that demonstrates this superiority is mo-

tion that has identical joint space beginning and ending conditions on some

of the dofs of the figure. An example of this type of motion is shown in

Figure B.6. This motion begins with the forearm nearly vertical, held close to

the shoulder with zero initial velocity. The motion ends with the forearm held

horizontal also with zero velocity. Because the upper arm and the wrist have

212

Figure B.5: Arm walk motion transitioning to salute motion and back to walk

motion. Arm degrees of freedom affected by the transition are colored green.

identical joint space starting and ending conditions, any simple interpolation

technique, which would include linear interpolation, polynomial interpolation,

and most other types of interpolation (include those described previously in

this thesis) which simply take a weighted sum of the two endpoint conditions

will yield a motion such as shown in the left on Figure B.6. This is an unnat-

ural motion since there is no joint space motion at the shoulder or the wrist.

The spacetime motion, however, has motion at every joint and looks much

more like the kind of motion a person might make.

213

Figure B.6: Joint angle interpolation vs. spacetime optimization

B.2 Equations of dynamics & their derivatives

Constants, symbols, and notation:

oi = origin of the i-th link coordinate frame.

ci = center of mass of the i-th link.

ωi
i = angular velocity of the i-th link .

zi
i = joint axis of the i-thlink expressed in

the i-th coordinate frame.

si
i,j = vector from oi to oj expressed in the i-th coordinate frame.

ri
i,j = vector from oi to cj expressed in the i-th coordinate frame.

Ai = 3x3 coordinate (or 4x4 homogeneous) transformation relating

the i-th coordinate frame to the (i− 1)-th frame.

Ic
k
i = inertia tensor of the i-th link about ci expressed in the k-th

coordinate frame.

214

Jc
k
i = Euler’s inertia tensor of the i-th frame about ci expressed in the

k-th coordinate frame.

Ωi
i = angular acceleration tensor of the i-th link expressed in the

i-th coordinate frame.

Fc
i
i = force vector acting on ci expressed in the i-th coordinate frame.

Mc
i
i = moment vector about ci expressed in the i-th coordinate frame.

f i
i = force vector exerted on link i by link (i− 1).

ηi
i = moment vector exerted on link i by link (i− 1).

τi = torque at joint i.

g = gravity.

mi = mass of the i-th link.

In the above, the subscript indicates the coordinate frame being represented

and superscript the coordinate frame in which it is represented.

We use + and - on index variables to denote relative placement in the joint

hierarchy. Thus, i1 is the predecessor of i which is the predecessor of i+. For

example, in the equation ωi+
i+ = AT

i+ωi
i + zi+

i+q̇i+, the variable ωi
i is the angular

velocity in the coordinate frame which precedes the coordinate frame of ωi+
i+.

In other words, coordinate frame i is closer to the root coordinate frame than

is frame i+. Note that there is no guarantee of a uniquely defined successor.

g = [0.0,−9.80655, 0.0]T

Jc
i
i =

1

2
trace

(
Ic

i
i

)
1− Ic

i
i

215

dual(v) = ṽ =

0 −v3 v2

v3 0 −v1

−v2 v1 0

dual(ṽ) = v

Forward dynamics equations:

Base conditions at the root of the creature:

ω0
0 = z0

0q̇0

ω̇0
0 = z0

0q̈0

s̈0
0,0 = AT

0 g

Recursive forward dynamics equations:

ωi+
i+ = AT

i+ωi
i + zi+

i+q̇i+

ω̇i+
i+ = AT

i+ω̇i
i + ω̃i+

i zi+
i+q̇i+ + zi+

i+q̈i+

Ωi+
i+ = ˙̃ω

i+

i+ + ω̃i+
i+ω̃i+

i+

s̈i+
0,i+ = AT

i+

[
s̈i
0,i + Ωi

is
i
i,i+

]

r̈i+
0,i+ = Ωi+

i+ri+
i+,i+ + s̈i+

0,i+

Fc
i+
i+ = mi+r̈i+

0,i+

M̃c
i+

i+ =
(
Ωi+

i+Jc
i+
i+

)− (
Ωi+

i+Jc
i+
i+

)T

216

Backward recursive equations (torque equations):

At a joint controlling an end-effector:

f i
i = Fc

i
i

ηi
I = r̃i

i,iFc
i
i + Mc

i
i

τi = ηi
i · zi

i

At an internal joint:

f i
i = Fc

i
i +

∑
i+

[
Ai+f i+

i+

]

ηi
i = r̃i

i,iFc
i
i + Mc

i
i +

∑
i+

[
Ai+ηi+

i+ + s̃i
i,i+f i

i+

]

τi = ηi
i · zi

i

The energy function & the partials:

P =

∫

t

∑
i

τ 2
i dt

δP

δθj

= 2

∫

t

∑
i

δτi

δqj

+
δτi

δq̇j

+
δτi

δq̈j

217

The forward partials & their initial conditions:

δωi+
i+

δqj

=
i+>j AT

i+

δωi
i

δqj

δωi+
i+

δqj

=
i+=j

δAT
j

δqj

ωj−
j−

δω̇i+
i+

δqj

=
i+>j AT

i+

δω̇i
i

δqj

+
δ̃ωi+

i

δqj

zi+
i+q̇i+

δω̇i+
i+

δqj

=
i+=j

δAT
j

δqj

ω̇j−
j− +

˜(
δAT

j

δqj

ω̇j−
j−

)
zj

j q̇j

δΩi+
i+

δqj

=
δ̃ω̇i+

i+

δqj

+
δ̃ωi+

i+

δqj

ω̃i+
i+ +

(
δ̃ωi+

i+

δqj

ω̃i+
i+

)T

δωi+
i+

δq̇j

=
i+>j AT

i+

δωi
i

δq̇j

δωi+
i+

δq̇j

=
i+=j zj

j

δω̇i+
i+

δq̇j

=
i+>j AT

i+

δω̇i
i

δq̇j

+
˜(

AT
i+

δωi
i

δq̇j

)
zi+

i+q̇i+

δω̇i+
i+

δq̇j

=
i+=j

˜AT
j ωj−

j−zj
j

218

δΩi+
i+

δq̇j

=
δ̃ω̇i+

i+

δq̇j

+
δ̃ωi+

i+

δq̇j

ω̃i+
i+ +

(
δ̃ωi+

i+

δq̇j

ω̃i+
i+

)T

δωi+
i+

δq̈j

= 0

δω̇i+
i+

δq̈j

=
i+>j AT

i+

δω̇i
i

δq̈j

δω̇i+
i+

δq̈j

=
i+=j zj

j

δΩi+
i+

δq̈j

=
δ̃ω̇i+

i+

δq̈j

δs̈i+
0,i+

δqj

=
i+>j AT

i+

[
δs̈i

0,i

δqj

+
δΩi

i

δqj

si
i,i+

]

δs̈i+
0,i+

δqj

=
i+=j

δAT
j

δqj

[
s̈j−
0,j− + Ωj−

j−s
j−
j−,j

]

δs̈i+
0,i+

δq̇j

=
i+>j AT

i+

[
δs̈i

0,i

δq̇j

+
δΩi

i

δq̇j

si
i,i+

]

δs̈i+
0,i+

δq̇j

=
i+=j 0

219

δs̈i+
0,i+

δq̈j

=
i+>j AT

i+

[
δs̈i

0,i

δq̈j

+
δΩi

i

δq̈j

si
i,i+

]

δs̈i+
0,i+

δq̈j

=
i+=j 0

δr̈i+
0,i+

δqj

=
δΩi+

i+

δqj

ri+
i,i+ +

δs̈i+
0,i+

δqj

δr̈i+
0,i+

δq̇j

=
δΩi+

i+

δq̇j

ri+
i,i+ +

δs̈i+
0,i+

δq̇j

δr̈i+
0,i+

δq̈j

=
δΩi+

i+

δq̈j

ri+
i,i+ +

δs̈i+
0,i+

δq̈j

δMc
i+
i+

δqj

=
δΩi+

i+

δqj

Jc
i+
i+ −

(
δΩi+

i+

δqj

Jc
i+
i+

)T

δMc
i+
i+

δq̇j

=
δΩi+

i+

δq̇j

Jc
i+
i+ −

(
δΩi+

i+

δq̇j

Jc
i+
i+

)T

δMc
i+
i+

δq̈j

=
δΩi+

i+

δq̈j

Jc
i+
i+ −

(
δΩi+

i+

δq̈j

Jc
i+
i+

)T

220

δFc
i+
i+

δqj

= mi+

δr̈i+
0,i+

δqj

δFc
i+
i+

δq̇j

= mi+

δr̈i+
0,i+

δq̇j

δFc
i+
i+

δq̈j

= mi+

δr̈i+
0,i+

δq̈j

The Reverse Partials:

δf i
i

δqj

=
∃i+

δFc
i
i

δqj

+
∑
i+

[
δAi+

δqj

f i+
i+ + Ai+

δf i
i

δqj

]

δf i
i

δqj

=
6∃i+

δFc
i
i

δqj

δf i
i

δq̇j

=
∃i+

δFc
i
i

δq̇j

+
∑
i+

[
Ai+

δf i
i

δq̇j

]

δf i
i

δq̇j

=
6∃i+

δFc
i
i

δq̇j

δf i
i

δq̈j

=
∃i+

δFc
i
i

δq̈j

+
∑
i+

[
Ai+

δf i
i

δq̈j

]

δf i
i

δq̈j

=
6∃i+

δFc
i
i

δq̈j

221

δηi
i

δqj

=
∃i+ r̃i

i,i+

δFc
i
i

δqj

+
δ̃Mc

i
i

δqj

+

∑
i+

[
δAi+

δqj

ηi+
i+ + Ai+

δηi+
i+

δqj

+ s̃i
i,i+

δAi+

δqj

f i+
i+ + s̃i

i,i+Ai+

δf i+
i+

δqj

]

δηi
i

δqj

=
6∃i+ r̃i

i,i+

δFc
i
i

δqj

+
δ̃Mc

i
i

δqj

δηi
i

δq̇j

=
∃i+ r̃i

i,i+

δFc
i
i

δq̇j

+
δ̃Mc

i
i

δq̇j

+
∑
i+

[
Ai+

δηi+
i+

δq̇j

+ s̃i
i,i+Ai+

δf i+
i+

δq̇j

]

δηi
i

δq̇j

=
6∃i+ r̃i

i,i+

δFc
i
i

δq̇j

+
δ̃Mc

i
i

δq̇j

δηi
i

δq̈j

=
∃i+ r̃i

i,i+

δFc
i
i

δq̈j

+
δ̃Mc

i
i

δq̈j

+
∑
i+

[
Ai+

δηi+
i+

δq̈j

+ s̃i
i,i+Ai+

δf i+
i+

δq̈j

]

δηi
i

δq̈j

=
6∃i+ r̃i

i,i+

δFc
i
i

δq̈j

+
δ̃Mc

i
i

δq̈j

δτi

δqj

=
δηi

i

δqj

· zi
i

δτi

δq̇j

=
δηi

i

δq̇j

· zi
i

δτi

δq̈j

=
δηi

i

δq̈j

· zi
i

222

Bibliography

[1] Allbeck, J. M., and Badler, N. I. Avatars á la snow crash. In

Computer Animation ’98 (June 1998), pp. 19–24.

[2] Amaya, K., Bruderlin, A., and Calvert, T. Emotion from mo-

tion. In Graphics Interface ’96 (May 1996), W. A. Davis and R. Bartels,

Eds., pp. 222–229.

[3] Arad, N., Dyn, N., Reisfeld, D., and Yeshurun, Y. Image warp-

ing by radial basis functions: Application to facial expressions. Computer

Vision, Graphics, and Image Processing: Graphical Models and Image

Processing 56, 2 (Mar. 1994), 161–172.

[4] Auslander, J., Fukunaga, A., Partovi, H., Christensen, J.,

Hsu, L., Reiss, P., Shuman, A., Marks, J., and Ngo, J. T.

Further experience with controller-based automatic motion synthesis for

articulated figures. ACM Trans. Gr. 13, 4 (Oct. 1995), 311–336.

[5] Badler, N. Virtual humans. In Virtual Humans: Behaviors and

Physics, Acting and Reacting. SIGGRAPH, July 1998. SIGGRAPH ’98

Course Note Series.

[6] Badler, N. I., Hollick, M. J., and Granieri, J. P. Real-time

control of a virtual human using minimal sensors. Presence 2, 1 (1993),

82–86.

223

[7] Badler, N. I., Phillips, C. B., and Webber, B. L. Simulating

Humans: Computer Graphics Animation and Control. Oxford University

Press, 1993.

[8] Balafoutis, C. A., and Patel, R. V. Dynamic Analysis of Robot

Manipulators: A Cartesian Tensor Approach. Kluwer Academic Pub-

lishers, 1991.

[9] Baraff, D. Analytical methods for dynamic simulation of non-

penetrating rigid bodies. In Computer Graphics (July 1989), pp. 223–

232. Proceedings of SIGGRAPH 89.

[10] Baraff, D. Curved surfaces and coherence for non-penetrating rigid

body simulation. In Computer Graphics (Aug. 1990), pp. 19–28. Pro-

ceedings of SIGGRAPH 90.

[11] Baraff, D. Coping with friction for non-penetrating rigid body sim-

ulation. In Computer Graphics (Aug. 1991), pp. 31–40. Proceedings of

SIGGRAPH 91.

[12] Baraff, D. Dynamic simulation of non-penetrating flexible bodies.

In Computer Graphics (July 1992), pp. 303–308. Proceedings of SIG-

GRAPH 92.

[13] Baraff, D. Fast contact force computation for nonpenetrating rigid

bodies. In Computer Graphics (July 1994), pp. 23–34. Proceedings of

SIGGRAPH 94.

[14] Baraff, D. Linear-time dynamics using lagrange multipliers. In Com-

puter Graphics (Aug. 1995), pp. 137–146. Proceedings of SIGGRAPH

96.

224

[15] Baraff, D., and Witkin, A. Large steps in cloth simulation. In

Computer Graphics (July 1998), pp. 43–54. Proceedings of SIGGRAPH

98.

[16] Barr, A. H., Currin, B., Gabriel, S., and Huges, J. F. Smooth

interpolation of orientations with angular constraints using quaternions.

In Computer Graphics (July 1992), pp. 313–320. Proceedings of SIG-

GRAPH 92.

[17] Bartenieff, I., and Lewis, D. Body Movement: Coping with the

Environment. Gordon and Breach Publishers, 1980.

[18] Barzel, R., Hughes, J. F., and Wood, D. N. Plausible motion

simulation for computer graphics animation. In Computer Animation

and Simulation ’96 (Sept. 1996), pp. 184–197. Proceedings of the 1996

Eurographics Workshop on Animation.

[19] Bizzi, E., Accornero, N., Chapple, W., and Hogan, N. Posture

control and trajectory formation during arm movement. The Journal of

Neuroscience 4 (1984), 2738–2744.

[20] Blumberg, B. M., and Galyean, T. A. Multi-level direction of

autonomous creatures for real-time virtual environments. In Computer

Graphics (Aug. 1995), pp. 47–54. Proceedings of SIGGRAPH 95.

[21] Bodenheimer, B., Rose, C. F., Rosenthal, S., and Pella, J.

The process of motion capture: Dealing with the data. In Proceedings

of the Eurographics Workshop on Computer Animation and Simulation

(Sept. 1997), pp. 3–18.

[22] Boulic, R., and Thalmann, D. Combined direct and inverse kine-

matic control for articulated figure motion editing. In Siggraph 93 Course

225

80: Recent Techniques in Human Modeling, Animation, and Rendering

(1993).

[23] Boulic, R., and Thalmann, D. Position control of the center of

mass for articulated figures in multiple support. In Proceedings of the

5th EuroGraphics Workshop on Animation and Simulation (Sept. 1995),

pp. 130–143.

[24] Bruderlin, A., and Calvert, T. Knowledge-driven, interactive an-

imation of human running. In Virtual Humans: Behaviors and Physics,

Acting and Reacting. SIGGRAPH, Aug. 1997. SIGGRAPH ’97 Course

Note Series.

[25] Bruderlin, A., and Calvert, T. W. Goal-directed, dynamic anima-

tion of human walking. In Computer Graphics (July 1989), pp. 233–242.

Proceedings of SIGGRAPH 89.

[26] Bruderlin, A., and Williams, L. Motion signal processing. In Com-

puter Graphics (Aug. 1995), pp. 97–104. Proceedings of SIGGRAPH 95.

[27] Burdett, R. G., Skrinar, G. S., and Simon, S. R. Comparison

of mechanical work and metabolic energy consumption during normal

gait. Journal of Orhopaedic Research 1, 1 (1983), 63–72.

[28] Capin, T., Jovovic, M., Esmerado, J., Aubel, A., and Thal-

mann, D. Efficient network transmission of virtual human bodies. In

Computer Animation ’98 (June 1998), pp. 41–48.

[29] Carlson, D. A., and Hodgins, J. K. Simulation levels of detail for

real-time animation. In Graphics Interface ’97 (1997), pp. 1–8.

226

[30] Cassell, J., Pelachaud, C., Badler, N., Steedman, M.,

Achorn, B., Becket, T., Doubille, B., Prevost, S., and

Stone, M. Animated conversation: Rule-based generation of facial ex-

pression, gesture, & spoken intonation for multiple conversational agents.

In Computer Graphics (July 1994), pp. 413–420. Proceedings of SIG-

GRAPH 94.

[31] Chadwick, J. E., Haumann, D. R., and Parent, R. E. Layered

construction for deformable animated characters. In Computer Graphics

(July 1989), pp. 243–252. Proceedings of SIGGRAPH 89.

[32] Chen, D. T., and Zeltzer, D. Pump it up: Computer animation

of a biomechanically based model of muscle using the finite element

method. In Computer Graphics (July 1992), pp. 89–98. Proceedings of

SIGGRAPH 92.

[33] Chenney, S., and Forsyth, D. View-dependent culling of dynamic

systems in virtual environments. In Proceedings of the 1997 Symposium

on Interactive 3D Graphics (Apr. 1997), pp. 55–58.

[34] Cohen, M. F. Gracefulness and style in motion control. In Proceedings

of the Workshop on the Mechanics, Control, and Animation of Articu-

lated Figures (Apr. 1989).

[35] Cohen, M. F. Interactive spacetime control for animation. In Computer

Graphics (July 1992), pp. 293–302. Proceedings of SIGGRAPH 92.

[36] Cremer, J., Kearney, J., and Papelis, Y. H.c.s.m.: A frame-

work for behavior and scenario control in virtual environments. ACM

Transactions on Modeling and Computer Simulation 5 (1995), 242–267.

227

[37] da Silva, F. W. S. V., Velho, L., Cavalcanti, P. R., and de Mi-

randa Gomes, J. A new interface paradigm for motion capture based

animation systems. In Proceedings of the Eurographics Workshop on

Computer Animation and Simulation (1997), pp. 19–36.

[38] Dean, J., and Brüwer, M. Control of human arm movements in two

dimensions: Paths and joint control in avoiding simple linear obstacles.

Experimental Brain Research 97 (1994), 497–514.

[39] DeCarlo, D., Metaxas, D., and Stone, M. An antropometric face

model using variational techniques. In Computer Graphics (July 1998),

pp. 67–74. Proceedings of SIGGRAPH 98.

[40] Dempster, W. T., and Gaughran, G. R. L. Properties of body

segments based on size and weight. American Journal of Anatomy 120

(1965), 33–54.

[41] Denavit, J., and Hartenberg, R. S. A kinematic notation for

lower-pair mechanisms based on matricies. ASME Journal of Applied

Mechanics 23 (1955), 215–221.

[42] Duff, T. Quaternion splines for animating orientation. In Proceedings

of the Monterey Computer Graphics Workshop (Dec. 1985), pp. 54–62.

[43] Earnshaw, R., Thalmann, N. M., Terzopoulos, D., and Thal-

mann, D. Computer animation for virtual humans. IEEE Computer

Graphics and Applications 18, 5 (1998), 20–23.

[44] Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and

Worley, S. Texturing and Modeling. AP Profefessional, 1998.

228

[45] Eng, J. J., Winter, D. A., MacKinnon, C. D., and Patla, A. E.

Interaction of the reactive moments and center of mass displacement

for postural control during voluntary arm movements. Neuroscience

Research Communications 2 (1992), 73–80.

[46] Faure, F., and Debunne, G. Dynamic analysis of human walking.

In Proceedings of the Eurographics Workshop on Computer Animation

and Simulation (1997), pp. 54–65.

[47] Featherstone, R. Robot Dynamics Algorithms. Kluwer Academic

Publishers, 1987.

[48] Finkelstein, A., Jacobs, C. E., and Salesin, D. H. Multiresolu-

tion video. In Computer Graphics (Aug. 1995), pp. 281–290. Proceedings

of SIGGRAPH 96.

[49] Flash, T., and Hogan, N. The coordination of arm movements: An

experimentally confirmed mathematical model. The Journal of Neuro-

science 5 (1985), 1688–1703.

[50] Forssberg, H., and Hirschfeld, H. Postural adjustments in sitting

humans following external perturbations: Muscle activity and kinemat-

ics. Experimental Brain Research 97 (1994), 515–527.

[51] Gascuel, M.-P. An implicit formulation for precise contact modeling

between flexible solids. In Computer Graphics (Aug. 1993), pp. 313–320.

Proceedings of SIGGRAPH 93.

[52] Gelfand, J., Flax, M., Endres, R., Lane, S., and Handelman,

D. Acquisition of automatic activity through practice: Changes in sen-

sory input. In Proceedings of the Tenth National Conference on Artificial

Intelligence (July 1992), AIII Press.

229

[53] Gill, P. E., Murray, W., and Wright, M. H. Practical Optimiza-

tion. Academic Press, 1981.

[54] Girard, M., and Maciejewski, A. A. Computational modeling for

the computer animation of legged figures. In Computer Graphics (July

1985), pp. 263–270. Proceedings of SIGGRAPH 85.

[55] Gleicher, M. Motion editing with spacetime constraints. In Proceed-

ings of the 1997 Symposium on Interactive 3D Graphics (Apr. 1997),

pp. 139–148.

[56] Gleicher, M. Retargetting motion to new characters. In Computer

Graphics (July 1998), pp. 33–42. Proceedings of SIGGRAPH 98.

[57] Goldberg, D. E. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley Publishing Company, Inc., 1989.

[58] Gortler, S. J., Schröder, P., Cohen, M. F., and Hanrahan,

P. Wavelet radiosity. In Computer Graphics (Aug. 1993), pp. 221–230.

Proceedings of SIGGRAPH 93.

[59] Grzeszczuk, R., and Terzopoulos, D. Automated learning of

muscle-actuated locomotion through control abstraction. In Computer

Graphics (Aug. 1995), pp. 63–70. Proceedings of SIGGRAPH 95.

[60] Grzeszczuk, R., Terzopoulos, D., and Hinton, G. Neuroanima-

tor: Fast neural network emulation and control of physics-based models.

In Computer Graphics (July 1998), pp. 9–20. Proceedings of SIGGRAPH

98.

230

[61] Guenter, B., Grimm, C., Wood, D., Malvar, H., and Pighin,

F. Making faces. In Computer Graphics (July 1998), pp. 55–66. Pro-

ceedings of SIGGRAPH 98.

[62] Gullapalli, V., Gelfand, J. J., and Lane, S. H. Synergy-based

learning of hybrid position/force control for redundant manipulators. In

Proceedings of IEEE Robotics and Automation Conference, Minneapolis

MN (June 1996), IEEE Press, Piscataway, NJ, pp. 3526–3531.

[63] Guo, S., and Robergé, J. A high-level control mechanism for human

locomotion based on parametric frame space interpolation. In Computer

Animation and Simulation ’96 (Sept. 1996), pp. 80–107. Proceedings of

the 1996 Eurographics Worshop on Animation.

[64] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Sta-

hel, W. A. Robust Statistics: The Approach Based on Influence Func-

tions. John H. Wiley, 1986.

[65] Handelman, D. A., and Lane, S. H. Human-to-machine skill trans-

fer through cooperative learning. Submitted to Intelligent Control Sys-

tems, IEEE Press.

[66] Hars, A. Masters of motion. Computer Graphics World (Oct. 1996),

26–34.

[67] Hodgins, J. K., O’Brien, J. F., and Tumblin, J. Do geometric

models affect judgements of human motion? In Graphics Interface ’97

(1997), pp. 17–25.

[68] Hodgins, J. K., and Pollard, N. S. Adapting simulated behaviors

for new creatures. In Computer Graphics (Aug. 1997), pp. 153–162.

Proceedings of SIGGRAPH 97.

231

[69] Hodgins, J. K., and Raibert, M. H. Biped gymnastics. The Inter-

national Journal of Robotics Research 9 (1990), 115–132.

[70] Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien,

J. F. Automated learning of muscle-actuated locomotion through con-

trol abstraction. In Computer Graphics (Aug. 1995), pp. 71–78. Pro-

ceedings of SIGGRAPH 95.

[71] Hogan, N. An organizing principle for a class of voluntary movements.

The Journal of Neuroscience 4 (1984), 2745–2754.

[72] Hogan, N. Control strategies for complex movements derived from

physical systems theory. International Symposium on Synergetics (May

1985).

[73] Hogan, N. Impedance control: An approach to manipulation. Journal

of Dynamic Systems, Measurement, and Control 107 (1985), 1–24.

[74] Hogan, N. The mechanics of multi-joint posture and movement control.

Biological Cybernetics 52 (1985), 315–331.

[75] Holland, J. H. Adaptation in Natural and Artificial Systems: An In-

troductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. MIT Press, 1992.

[76] Hollerbach, J. M. A recursive lagrangian formulation of manipulator

dynamics and a comparative study of dynamics formulation complexity.

IEEE Transactions on Systems, Man, and Cybernetics SMC-10, 11 (Nov.

1980).

[77] Houy, D. R. Range of motion in college males. Presented at the

Conference of the Human Factors Society, Santa Monica, CA, 1983.

232

[78] Huang, P. S., and van de Panne, M. A planning algorithm for

dynamic motions. In Computer Animation and Simulation ’96 (Sept.

1996), pp. 169–182. Proceedings of the 1996 Eurographics Worshop on

Animation.

[79] Isaacs, P. M., and Cohen, M. F. Controlling dynamic simulation

with kinematic constraints, behavior functions and inverse dynamics.

In Computer Graphics (July 1987), pp. 215–224. Proceedings of SIG-

GRAPH 87.

[80] Koga, Y., Kondo, K., Kuffner, J., and Latombe, J.-C. Plan-

ning motions with intentions. In Computer Graphics (July 1994),

pp. 395–408. Proceedings of SIGGRAPH 94.

[81] Koza, J. R. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

[82] Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press, 1994.

[83] Lamouret, A., and van de Panne, M. Motion synthesis by example.

In Computer Animation and Simulation ’96 (Sept. 1996), pp. 199–212.

Proceedings of the 1996 Eurographics Workshop on Animation.

[84] Lane, S. H., and Gelfand, J. J. Modulation of Robotic Motor Syn-

ergies Using Reinforcement Learning Optimization. Kluwer Academic

Publisher, 1992, pp. 521–538. G. Bekey and K. Goldberg, eds.

[85] Lasseter, J. Principles of traditional animation applied to 3d com-

puter animation. In Computer Graphics (July 1987), pp. 35–44. Pro-

ceedings of SIGGRAPH 87.

233

[86] Laszlo, J., van de Panne, M., and Fiume, E. Limit cycle control

and its application to the animation of balancing and walking. In Com-

puter Graphics (Aug. 1995), pp. 155–162. Proceedings of SIGGRAPH

96.

[87] Latombe, J.-C. Robot Motion Planning. Kluwer Academic Publishers,

1991.

[88] Lee, P., Wei, S., Zhao, J., and Badler, N. I. Strength guided

motion. In Computer Graphics (Aug. 1990), pp. 253–262. Proceedings

of SIGGRAPH 90.

[89] Liu, Z., and Cohen, M. F. An efficient symbolic interface to con-

straint based animation systems. In Proceedings of the 5th EuroGraphics

Workshop on Animation and Simulation (Sept. 1995).

[90] Liu, Z., and Cohen, M. F. Keyframe motion optimization by relaxing

speed and timing. In Proceedings of the 5th EuroGraphics Workshop on

Animation and Simulation (Sept. 1995).

[91] Liu, Z., Gortler, S. J., and Cohen, M. F. Hierarchical spacetime

control. In Computer Graphics (July 1994), pp. 35–42. Proceedings of

SIGGRAPH 94.

[92] Maciejewski, A. A., and Reagin, J. M. A parallel algorithm and

architecture for the control of kinematically redundant manipulators.

IEEE Transactions on Robotics and Automation 10 (1994), 405–414.

[93] Maestri, G. Capturing motion. Computer Graphics World (1995),

47–51.

234

[94] Maestri, G. [Digital] Character Animation. New Riders Publishing,

1996.

[95] Magnenat-Thalmann, N., and Thalmann, D. Complex models

for animating synthetic actors. IEEE Computer Graphics & Applications

(Sept. 1991).

[96] Maiocchi, R. 3-D character animation using motion capture. In Inter-

active Computer Animation, N. Magnetat-Thalmann and D. Thalmann,

Eds. Prentice-Hall, London, 1996, pp. 10–39.

[97] Maurel, W., Thalmann, D., Hoffmeyer, P., Beylot, P., Gin-

gins, P., Kalra, P., and Thalman, N. M. A biomechanical muscu-

loskeletal model of human upper limb for dynamic simulation. In Com-

puter Animation and Simulation ’96 (Sept. 1996), pp. 121–136. Pro-

ceedings of the 1996 Eurographics Workshop on Animation.

[98] McGeer, T. Passive bipedal running. Proceedings of the Royal Society

of London 240 (1990), 107–134.

[99] McGeer, T. Dynamics and control of bipedal locomotion. Journal of

Theoretical Biology 163 (1993), 277–314.

[100] McKenna, M., and Zeltzer, D. Dynamic simulation of autonomous

legged locomotion. In Computer Graphics (Aug. 1990), pp. 29–38. Pro-

ceedings of SIGGRAPH 90.

[101] Metaxas, D. Articulated figure dynamics, behavior, and control. In

Virtual Humans: Behaviors and Physics, Acting and Reacting. SIG-

GRAPH, Aug. 1997. SIGGRAPH ’97 Course Note Series.

235

[102] Metaxas, D., and Terzopoulos, D. Dynamic deformation of solid

primitives with constraints. In Computer Graphics (July 1992), pp. 309–

312. Proceedings of SIGGRAPH 92.

[103] Micchelli, C. A. Interpolation of scattered data: Distance matrices

and conditionally positive definite functions. Constructive Approxima-

tion 2 (1986).

[104] Milenkovic, V. J. Position-based physics: Simulating the motion of

many highly interacting spheres and polyhedra. In Computer Graphics

(Aug. 1996), pp. 129–136. Proceedings of SIGGRAPH 96.

[105] Molet, T., Boulic, R., and Thalmann, D. A real time anatomical

converter for human motion capture. In Computer Animation and Simu-

lation ’96 (Sept. 1996), pp. 79–94. Proceedings of the 1996 Eurographics

Workshop on Animation.

[106] Mussa-Ivaldi, F. A., Hogan, N., and Bizzi, E. Neural, mechanical,

and geometric factors subserving arm posture in humans. The Journal

of Neuroscience 5 (1985), 2732–2743.

[107] Mussa-Ivaldi, F. A., Morasso, P., and Zaccaria, R. Kinematic

networks: A distributed model for representing and regularizing motor

redundancy. Biological Cybernetics 60 (1988), 1–16.

[108] Musse, S., and Thalmann, D. A model of human crowd behavior:

Group inter-relationship and collision detection analysis. In Proceedings

of the Eurographics Workshop on Computer Animation and Simulation

(1997), pp. 39–51.

236

[109] Nedel, L. P., and Thalmann, D. Modeling and deformation of

the human body using an anatomically-based approach. In Computer

Animation ’98 (June 1998), pp. 34–40.

[110] Ngo, J. T., and Marks, J. Spacetime constraints revisited. In Com-

puter Graphics (Aug. 1993), pp. 343–350. Proceedings of SIGGRAPH

93.

[111] Pentland, A., and Williams, J. Good vibrations: Modal dynamics

for graphics and animation. In Computer Graphics (July 1989), pp. 215–

222. Proceedings of SIGGRAPH 89.

[112] Perlin, K. Real time responsive animation with personality. IEEE

Transactions on Visualization and Computer Graphics 1, 1 (Mar. 1995),

5–15.

[113] Perlin, K., and Goldberg, A. Improv: A system for scripting

interactive actors in virtual worlds. In Computer Graphics (Aug. 1996),

pp. 205–216. Proceedings of SIGGRAPH 96.

[114] Phillips, C. B., and Badler, N. I. Interactive behaviors for bipedal

articulated figures. In Computer Graphics (Aug. 1991), pp. 359–362.

Proceedings of SIGGRAPH 91.

[115] Pighin, F., Hecker, J., Laschinski, D., Szeliski, R., and

Salesin, D. H. Synthesizing realistic facial expressions from pho-

tographs. In Computer Graphics (July 1998), pp. 75–84. Proceedings of

SIGGRAPH 98.

[116] Potel, M. J. On the trail of the shadow woman: The mystery of

motion capture. IEEE Computer Graphics and Applications 18, 5 (Sept.

1998), 14–19.

237

[117] Powell, M. J. D. Radial basis functions for multivariable interpola-

tion: A review. In Algorithms for Approximation, J. C. Mason and M. G.

Cox, Eds. Oxford University Press, Oxford, UK, 1987, pp. 143–167.

[118] Raibert, M. H. Legged Robots that Balance. The MIT Press, 1986.

[119] Raibert, M. H., and Hodgins, J. K. Animation of dynamic legged

locomotion. In Computer Graphics (Aug. 1991), pp. 349–348. Proceed-

ings of SIGGRAPH 91.

[120] Reynolds, C. W. Flocks, herds, and schools: A distributed behavioral

model. In Computer Graphics (July 1987), pp. 25–34. Proceedings of

SIGGRAPH 87.

[121] Reynolds, C. W. Competition, coevolution, and the game of tag. In

Artificial Life IV: Proceedings of the Fourth International Workshop on

Synthesis and Simulation of Living Systems (1994), pp. 59–69.

[122] Reynolds, C. W. Evolution of corridor following behavior in a noisy

world. In From Animals to Animats 3: Proceedings of the Third Interna-

tional Conference on Simulation of Adaptive Behavior (1994), pp. 402–

410.

[123] Rijpkema, H., and Girard, M. Computer animation of knowledge-

based human grasping. In Computer Graphics (Aug. 1991), pp. 339–348.

Proceedings of SIGGRAPH 91.

[124] Rose, C. F., Guenter, B., Bodenheimer, B., and Cohen, M.

Efficient generation of motion transitions using spacetime constraints.

In Computer Graphics (Aug. 1996), pp. 147–154. Proceedings of SIG-

GRAPH 96.

238

[125] Rose, J., and Gamble, J. G. Human Walking. Williams & Wilkins,

1994.

[126] Ruprecht, D., and Müller, H. Image warping with scattered data

interpolation. IEEE Computer Graphics and Applications 15, 2 (Mar.

1995), 37–43.

[127] Scheepers, F., Parent, R. E., Carlson, W. E., and May,

S. F. Anatomy-based modeling of the human musculature. In Com-

puter Graphics (Aug. 1997), pp. 163–172. Proceedings of SIGGRAPH

97.

[128] Schröder, P., and Zeltzer, D. The virtual erector set: Dynamic

simulation with linear recursive constraint propagation. In Proceedings

of the 1990 Symposium on Interactive 3D Graphics (Mar. 1990).

[129] Shoemake, K. Animating rotation with quaternion curves. In Com-

puter Graphics (July 1985), pp. 245–254. Proceedings of SIGGRAPH

85.

[130] Shoemake, K., and Duff, T. Matrix animation and polar decom-

position. In Graphics Interface (1992), pp. 258–264. Proceedings of

Graphics Interface ’92.

[131] Sims, K. Evolving 3d morphology and behavior by competition. In

Artificial Life IV Proceedings (1994), pp. 28–39.

[132] Sims, K. Evolving virtual creatures. In Computer Graphics (Aug. 1994),

pp. 15–22. Proceedings of SIGGRAPH 94.

239

[133] Steketee, S. N., and Badler, N. I. Parametric keyframe interpola-

tion incorporating kinetic adjustment and phrasing control. In Computer

Graphics (July 1985), pp. 255–262. Proceedings of SIGGRAPH 85.

[134] Stephenson, N. Snow Crash. look it up and check publication year at

home, 1994.

[135] Terzopoulos, D., Rabie, T., and Grzeszczuk, R. Perception

and learning in artificial animals. In Artificial Life V: Proceedings of

the Fifth International Conference on the Synthesis and Simulation of

Living Systems (1996).

[136] Terzopoulos, D., Tu, X., and Grzeszczuk, R. Artificial fishes:

Autonomous locomotion, perception, behavior, and learning in a simu-

lated physical world. Artificial Life 1 (1994), 327–351.

[137] Thalmann, N. M., and Thalmann, D. Synthetic Actors in

Computer-Generated 3D Films. Springer-Verlag, Berlin, 1990.

[138] Thomas, F., and Johnston, O. Disney Animation– The Illusion of

Life. Abbeville Press, New York, 1981.

[139] Tu, X., and Terzopoulos, D. Artificial fishes: Physics, locomotion,

perception, and behavior. In Computer Graphics (July 1994), pp. 43–50.

Proceedings of SIGGRAPH 94.

[140] Unuma, M., Anjyo, K., and Tekeuchi, R. Fourier principles for

emotion-based human figure animation. In Computer Graphics (Aug.

1995), pp. 91–96. Proceedings of SIGGRAPH 95.

240

[141] van de Panne, M., and Fiume, E. Sensor-actuator networks. In

Computer Graphics (Aug. 1993), pp. 335–342. Proceedings of SIG-

GRAPH 93.

[142] van de Panne, M., Fiume, E., and Vranesic, Z. Reusable motion

synthesis using state-space controllers. In Computer Graphics (Aug.

1990), pp. 225–234. Proceedings of SIGGRAPH 90.

[143] Watt, A., and Watt, M. Advanced Animation and Rendering Tech-

niques: Theory and Practice. Addison-Wesley / ACM Press, 1992.

[144] Wiley, D. J., and Hahn, J. K. Interpolation synthesis for articulated

figure motion. In Proceedings of the Virtual Reality Annual International

Symposium (Mar. 1997), IEEE Computer Society Press, pp. 157–160.

[145] Wilhelms, J., and Gelder, A. V. Anatomically based modeling.

In Computer Graphics (Aug. 1997), pp. 173–180. Proceedings of SIG-

GRAPH 97.

[146] Witkin, A., Gleicher, M., and Welch, W. Interactive dynamics.

Computer Graphics (Mar. 1990).

[147] Witkin, A., and Kass, M. Spacetime constraints. In Computer

Graphics (Aug. 1988), pp. 159–168. Proceedings of SIGGRAPH 88.

[148] Witkin, A., and Popović, Z. Motion warping. In Computer Graphics

(Aug. 1995), pp. 105–108. Proceedings of SIGGRAPH 95.

[149] Witkin, A., and Welch, W. Fast animation and control of nonrigid

structures. In Computer Graphics (Aug. 1990), pp. 243–252. Proceedings

of SIGGRAPH 90.

241

[150] Zhao, X., Tolani, D., Ting, B.-J., and Badler, N. I. Simulat-

ing human movements using optimal control. In Computer Animation

and Simulation ’96 (Sept. 1996), pp. 109–120. Proceedings of the 1996

Eurographics Workshop on Animation.

