VERBS AND ADVERBS:
MULTIDIMENSIONAL MOTION
INTERPOLATION
USING RADIAL BASIS FUNCTIONS

Charles F. Rose, 111

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

June 1999

11

©1999
Charles F. Rose, 111

All rights reserved

m memoriam
Pearl Rose
1910 — 1992

v

Abstract

This thesis describes a new technology dubbed Verbs € Adverbs, the goal
of which is to create controllable animation through interpolation of example
motions. Use of motion capture or hand-animated source material was a key
requirement for this work since artists and capture systems currently produce
the most compelling animations. Leveraging the artist’s talent for interactive
animation is an important goal for 3D human figure animation research.

Interactive, non-scripted animations require control mechanisms. With
control, a system can be designed to react to a user’s wishes, a simulation’s
unfolding state, or both. Many control techniques are being pursued by the
research community with dynamic, procedural, and interpolated methods the
three primary groupings. Dynamic animations require a complex controller
and a dynamics simulator. Procedural animations use code-like scripts. Both
of these methods are alien to classically-trained animators. Likewise, these
techniques do not easily incorporate motion capture. Thus we have developed
a technique that supports, rather than supplants, the artist or motion capture
system. Verbs & Adverbs is a system which seeks to empower the artist, to
provide a new way to construct animations for use in the interactive realm.

This thesis describes a process for turning source motions into rich con-
trollable animation segments called “verbs,” parameterized along a number of
control axes called “adverbs.” The core mathematics for this technique uses
multi-dimensional function interpolation with radial basis functions. Once cre-

ated, verbs are placed into a “verb-graph,” an object detailing the appropriate

times to transition from one verb to another. The verb-graph is the entity
controlled by the interactive system.

Additionally, a number of ancillary topics are detailed in this thesis. Ro-
bust motion capture analysis, torque-minimal transitioning between motions,
and a standard motion interface, or formalism, are all developed here. These,
when combined with the Verbs é Adverbs technique, form a powerful anima-

tion system.

vi

Acknowledgements

The seashore in New Jersey is exceptionally calming in winter. Despite the
January chill, I will go there in a few weeks to savor the fact that my disser-
tation, mi diablo en forma de una tesis, is finished. It has taken me a long
time to get to this point. Nearly a decade ago, Mary Wagner first helped me
decide that earning a Ph.D. was a good goal. Ortley beach is where I'll go to
contemplate finishing this major thing and to think about what to do next.
My lava lamps are bubbling, I have some dreamy music playing in the
background, and I'm feeling calm. I think I'm ready to write my acknowl-
edgements. I've been saving them up for a time when I'm feeling particularly
connected to my life, because I want to get it right. I want to effectively con-
vey the profound gratitude I feel towards those who have helped me, helped
shape me, and to those who helped me hold together through my Ph.D. All
the people I'll write about for the next few pages have helped make life to
date fulfilling and extremely interesting. I hope that my future is as filled

with memorable persons of quality.

Education

Michael Cohen is an exceptional person to work with and for. He helped
shepherd me through my Ph.D. and I continue to learn a great deal from him.
He’s been more patient than I think I deserve. I look forward to the years

ahead and to continuing to work with Michael at Microsoft Research.

vii

Jack Gelfand helped me learn about biomechanics and to understand the
value of that body of work to computer graphics. This dissertation is better
for understanding the connections between modeling human phenomena and
modeling human processes. Thanks for that and for shoring up the Princeton
side of my bicoastal Ph.D.

Thanks to Adam Finkelstein, my third reader, and to David Dobkin and
Perry Cook, the rest of my committee. The last few months have dragged on
a little too long. Thanks for not getting too frustrated with delays (or at least
for not letting on!)

Melissa Lawson deserves special thanks for keeping track of all the details
needed to move through Princeton’s graduate program. Further thanks for
being an extremely pleasant person to talk to when I'm in town.

Thanks to my office-mates at P’ton: Ramesh Sitaruman, Dan Boneh,
James Shaw, and honorary office-mates Colleen Wirth and Steven (Schlomo)
Gortler. I can’t remember if we ever devised a scheme for the perfect human
society, but we certainly used many afternoons trying. Thankfully, the doors
at Princeton were thick and our advisors were upstairs.

My time at Princeton was memorable and I will hold the university close
to me always. My education did not start there, however, and I'd like to
remember my undergraduate mentors who helped me prepare for graduate
school. First, I’d like to thank Charles Goldberg, who took a special interest
in my education while I was at Trenton State College and who championed me
to Princeton’s department. I spent a great deal of time in the Princeton area
during my youth. Attending the university was always something I wanted to
do and he helped me get there. Charlie died recently— tragically early. My
visits to TSC will hereafter always be missing an integral component.

Mary Wagner and Ursula Wolz were two professors at TSC who got me

viii
going on the graduate school track. Mary helped me convince myself early on
that going to grad school was a laudable goal and Ursula helped me understand
that I probably wouldn’t be playing golf in the mornings before a leisurely af-
ternoon in the lab. As an undergraduate, I had to invent challenges. Graduate
school had them in abundance. Thanks for getting me ready to deal with that
shock.

I’d also like to thank the professors in other disciplines who helped make
my TSC experience so enlightening. Mort Winston, Robert Anderson, Lynn
Waterhouse, Lahna Diskin, and Lee Harrod all deserve thanks for running
some of my favorite courses. Special thanks to William DeMerrit for running
the college honors program, something I found very fulfilling.

But wait, there’s more! With my ten year high school reunion recently
past, my thoughts return to Toms River High School South. Thanks to Don
Comp and Dennis Pieretti for teaching me the basics of computer science and
helping to spark some of my initial interest in the field. Thanks to Janice
Gelzer, Sally Howe, Renee Lomell, David Fitzmaurice, and especially Angie

Cazolla for helping to foster my broad interests.

Employment

I've had the good fortune to be a part of one of the most exciting groups in
the graphics world for the last three years. I'd like to thank Brian Guenter for
bringing me to Microsoft Research for my initial internship which was extended
through SIGGRAPH deadlines and then to infinity and beyond. While I may
occasionally wake up and dread the commute from Capitol Hill to Redmond, I
never wake dreading my job. I am honored to be a part of Microsoft Research
and the graphics group in particular. Thanks to all of MSRG for being great

coworkers.

ix

Thanks to Microsoft’s motion capture group for great support and col-
laboration. Seth Rosenthal, John Pella, Hank Mueret, and Jana Wilcoxen
all deserve special thanks for going above and beyond for our project. David
Thiel helped us produce videos and helped with sound for our demos. People
like these make working at Microsoft an honor as well as a pleasure.

Thanks to Jim Shepherd, Charles Casey, and Mary Kondash at Com-
puter Sciences Corporation, for teaching me how to work in the professional
computer science world and thanks to Stella Kern for my initial exposure to
gainful employment at the Toms River Library. The lessons you helped teach

have proven invaluable as I continue my professional development.

Friends

Michael W. Post has been an exceptionally important friend over the years
and has often helped to push me out the local minima I’'m so good at finding.
I’d be much less happy, and much less close to completion, if our paths had
never crossed. Here’s to the best human catalyst I know. Let’s find another
circus maximus.

While Mr. Post convinces me to dye my hair blue (as evidenced at
http://www.research.microsoft.com/ rose), Matthew Sharkey helps me
keep my mental balance. Unchecked anxiety is my most deadly personal foe
and Matt has always been my champion in this regard. That and sixteen years
of amazing friendship intertwine our lives inseparably.

Michelle Genereux— I still love typing her cool last name after all these
years. Michelle has been one of my most trusted mentors since I first met her
when [was but a lowly page in Toms River Library’s publications department.
She is also one of my most closest friends, and I have often benefited from her

measured, well-reasoned advice.

Peggy Deaner, fellow New Jersey expatriate, has been an important friend
over the years from whom I can always expect sympathy and good advice. 1
hope I've proven as useful to her. Peggy: best wishes for your own graduate
school efforts, which you have recently started. You will make an excellent
educator.

To Jen Lutton and Jen Escalante: 3000 miles does not diminish the im-
portance I place in being able to count you as friends. Go grunge and find
some jobs in Seattle so we can reform the Jersey Cabal.

To Don Mitchell, Mike Marr, Chris Liles, Briand Sanderson, and the
rest of the Crossroads dinner crowd: thanks. The conversations are always
stimulating. Soon our plans will be complete and phase two can begin!

I'd also like to thank the Friday night movie crowd, especially Daniel
Brown, our ardent movie-night organizer and resident center of the universe.
You've all helped put more fun and hope into life than I've had in recent years.

I’d like to especially thank my friends and housemates, Chris Liles and
Cindy Grimm. I know I've been testy lately and I'd like to thank you for
putting up with me and being great friends. Without you, there would be no

groove in our groovy Capitol Hill pad!

Family

I have a very loving, supportive, and (by today’s standards) large family. I'd
like to thank them all for being there over the years. To my grandparents,
aunts, uncles, and nifty cousins, thanks for being a good family.

Donald and John Cullerton deserve a note of thanks for showing me two
views of the academic, intellectual community I'd later join. John, I may have
dreaded your Christmas-eve quizzing about derivatives and, Donald, I may

have taken issue with some of your wilder notions, but I deeply miss both of

x1

you. The holiday’s aren’t the same now that you are both gone.

The people who deserve the greatest thanks are the members of my im-
mediate family, my sister Pamela and my parents Laurie and Charles. Under
stress, my temper can be terrible and my sarcasm vitriolic. I'm afraid that
my family has received the brunt of that unpleasantness over the years. For
putting up with me and providing a fine home, I thank you. I'm also very
grateful for having the lives of these three interesting people so closely inter-
woven with my own. I couldn’t have wished for a better set of parents or a
cooler sister.

Finally, thanks to the woman to whom this thesis is dedicated in memo-
riam, my paternal grandmother, Pearl Rose. The quiet friendship we had
helped me to understand the usefulness of quiet introspection. I thoroughly
enjoyed visiting you at the beach on the weekends; waking up to your pussy-
cat shaped pancakes, playing alone on the beach during the day, and watching
Love Boat and Fantasy Island together in the evening. This is the stuff of
childhood paradise. I remember those times fondly and miss you (and your

pride of cats) dearly.

Charles F. Rose, I11
Seattle, WA
January 31, 1998

xii

Table of Contents

Abstract
Acknowledgements
List of Figures
List of Tables

1 Introduction

1.1 The demands of interactivitycooooiiiiiiiii
1.2 Paths to control
1.3 Verbs & adverbs........oooiiiii
1.4 Higher-level control..............ooii i
1.5 Organizationoooiiiii i

2 Human figure animation overview

2.1 Forward kinematics..........cooiiiiiii i
2.2 Keyframing ..o
2.3 Inverse KinematiCsooovuiiiiiiiii i
2.4 MOtION CaAPUUTE . .utt e
2.5 Parameterized motion and interactivity.....................
2.6 Dynamics-based MOtiOncoviiiiiiiiiiiiii
2.7 Procedural motion ..o

2.8 Interpolated moOtioncoooiiiiiii i

iv

vi

XV

XX

2.9 COoNCIUSIONS ... vui 42
Acquisition of examples 43
3.1 What is a motion-snippet? ..o 44
3.2 The skeleton’s DOF orderingccooviiiiiiiiiiiiiin. 46
3.3 Motion’s relation to the skeleton....................... 47
4 THINE o 49
3.5 What makes a good example? ... 51
3.6 Hand-designed examplescooooiiiiiiiiiiii 63
3.7 Motion captured examples ..ot 64
3.8 The motion formalismooooiiiii 70
3.9 Functional composition of motions...................ooviiiL. 74
3.10 Cyclification ...oee i 95
311 CONCIUSIONS ..o eeeee e 97
Verbs & adverbs 98
A1 OVEIVIEW ettt 99
4.2 The canonical timelinecii 101
4.3 Verb construction ... 109
4.4 Kinematic constraintscoooiiiiiiiiiiiiii 114
4.5 The verb design 100p.......coooiiiiii 117
4.6 Multiresolution radial basis function approximation................ 119
4.7 Efficiency CONCErnsoooiiiiiiiiiiiii 132
4.8 MRBF interpolation and human biomechanics 134
4.9 Some further problems ... 136
4.10 ConclUSIONSt 140

The verb graph:

a verb management scheme 141

X1v

N B O 1 72) P 141
5.2 The verb graph formalismo 144
5.3 Restrictions on the verb graph state.......................c 152
5.4 Non-standard graph layouts...............oooi 153
5.5 Transitioningot 155
5.6 GESTUIIIG « ot 161
5.7 Motion snippets are verbs t00cooiiiiiiiiiiii 165
5.8 CONCIUSIONSui i 167
Results & user study 168
6.1 VeTbS e 168
6.2 Verb-graphs 176
6.3 USer Sty «..oviniii i 181
6.4 CONCIUSIONSttt 183
Conclusions & future directions 186
7.1 Integration with other techniqueso. 187
7.2 Skinning & musculature animationcococii 188
7.3 Facial animation ... 189
T4 OPEIN ASSUES ..ttt 189
The motion formalism 191
AT Basic MOtION ...t 192
A2 CHP MOION ...t 194
A3 Affine MOtION ..ot 195
A4 Time-warp motioncoooiiiii i 196
A5 MIrror MmOtIONvieii 197
A6 COmMPOSIIONttt 199

AT Concatenation ..ot 200

XV

A8 SeleCtion. .. .uini 201
A9 Cyclificationo 202
ALTO Transitiono.oe i 203
AL VerbS oo 204
B Dynamics equations & torque-minimal transitioning 206
Bl Results. ..o 209
B.2 Equations of dynamics & their derivatives............................ 213

Bibliography 222

Xvi

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Levels of abstraction in figure motioncoooenae.
Degrees of freedom ...
Hierarchical vs. global motion for a two-link arm...................
Redundant IK Solutions............coooiiiiiiiiiii
Motion capture SYyStemSoouvitiiiiii i
Motion capture phases for Microsoft Precision Racing.............
Digital Image Design’s “Monkey” ...
Motion M produces DOF values O given time 7 and control pa-

rameters p. State information s may be kept from one iteration

to the mext. ..o
Whip motion can be generated using hybrid kinematics and

INVErSe-AYTNAMICS ...ttt

Sensor actuator NEEWOTK

A simple walking motionocooi
The skeleton hierarchy ...
The initial DOF orderingc.oooiiiiiiiii
Different skeleton results in foot slideoco.
Connection between canonical-time, ¢, and verb-time, T"..........

Different walking styles..........coooiiiiiii i

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33

4.1
4.2

XVvil

Two walks not displaying structural similarity....................... 53
Wrist curl extent 55
A medium reach...........oo 56
A Tow reach.. ..o 57
Dissimilar use of joint angles 57
Similar use of joint angles ... 58
Poor motion blend due to dissimilar DOF curves 58
Good motion blend with similar DOF curves 59
Reorienting the character...................oc 60
Placement of sensors for motion capture analysis 64
Fitting motion capture data to the skeleton 68
Walk motion from motion capture data 69
A hierarchy of motion types ... 75
Shifting the key-times for a clip motion.............................. 78
A clipped walk motion ... 78
A walk and 2 affines ... 81
TIME-WaIPING ..ottt 83
Mirroring anti-symmetriesooooeiiiii i 85
A mirrored jJump-dive... ... 86
A walk/wave compositionooviiiiiiiiiiiiiii 87
DOF-classes for walk/wave motionsccoeoviiiiinin.n. 89
DOF-usage values too broad ... 89
Walk /wave DOF-usage time lapse.............coooviiiiiiiiin. 91
A concatenation ... 93
Cylification smooths out the cycle for seamless concatenation... 96
Motions My and Mo ... 103
Plot of X-translation for My and My ..o 104

xviil

4.3 Strange blend due to incompatible timelines 104
4.4 Good blend with canonical timeline 105
4.5 Key-times for a walking repertoirecoo, 106
4.6 Walking key-times placed at foot-down events....................... 106
4.7 Key-times for a idling repertoire.................ooi 107
4.8 Key times for two extreme hands-on-hips idles 107
4.9 No key times blend ... 108
4.10 Use Key tImes ... voneieii e 108
4.11 Support constraint for a walk..................o 115
4.12 Verb refinement processooeviieiiiiiiii i 118
4.13 Initial verb to be refined ... 120
4.14 What’s wrong with the overly happy walk?........................... 121
4.15 TImproved walk ... 122
4.16 Differences at happiness = 420 ..o 123

4.17 The simple technique works well for these examples. The green

dots are the examples, the orange line the linear approximation

and the blue line the complete approximation........................ 124
4.18 The simple technique fails for these examples. The green dots

are the examples, the orange line the linear approximation and

the blue line the complete approximation. 125
4.19 Ill-behaved interpolations lead to unsatisfactory results........... 126
4.20 Two close examples made into one cluster 127
4.21 Clustering algorithm in action...................oooi. 129
5.1 A linear verb graph ... 142
5.2 A “home position” style verb graphL 143
5.3 An arbitrary verb graph ... 143

5.4 Verb queue timesooiiiiiiii e 146

5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

6.1
6.2

6.3
6.4
6.5
6.6

6.7
6.8

Xix

A simple verb parameterized by adverb happiness.................. 150
Velocity boost ..o 151
A one-way graph ..o 154
A graph with a special start sequence.........................o 154
A sub-graph containing a special death................................ 155
Linear blending function, a(t) =¢.........cooooiiiiiiii. 156
A sigmoid blending function, a(t) = M—+m)+l 156
The transition ..o 157
A bad root transition ... 158
Walk with foot support constraints indicated 159
A milling about transition.................cooooi 160
Primary vs. gesture weight during a gesture 162
A walk verb with the wave gesture overlaid atop it................. 162
Celebrate good times come home....................c 166
The completed hierarchy............c..cooiiii 166
Christian walking ... 170
A walk sampled across two emotional axes. The green figures

are the example motions. The rest are created through the

verb/adverb mechanism.ooooi 171
Emotive turns ... 172
A reach sampled along the x and y axes..............coooviin.. 173
A sampling of reach errors ... 174

Comparison of raw versus reparameterized reaching. The spike
closer to zero for the reparameterized verb indicates lower over-
All ETTOT. ... 175
Three examples from two basis motionsoooiini, 177

A JOgEINg VErD ... 178

XX

6.9 The jogging verb from overheadc 178
6.10 A sampling of an idle motiono.o 179
6.11 Demo applicationccoooiiiiii i 179
6.12 The final verb graph for the demo application 182
6.13 A TINe-UD c oo 183
A.1 A hierarchy of motion typescoooiiiiiii 192

B.1 End position of motion 1 and beginning position of motion 2

for a transition 209
B.2 Multiple time exposure of transition generated from the mo-

tions in Figure B.1 ... 210
B.3 The complete animation with 5 transitions between 6 different

100101 710} 1L PSPPSRI 210
B.4 Inverse-kinematics is used to improve the placement of the feet

during transitionso 211
B.5 Arm walk motion transitioning to salute motion and back to

walk motion. Arm degrees of freedom affected by the transition

are colored Ereen. 212

B.6 Joint angle interpolation vs. spacetime optimization............... 213

poel

List of Tables

2.1
2.2

3.1

3.2

4.1
4.2

6.1

6.2

Al

A2

Trade-offs in stateless vs. stated motions........coooveeiveivnnnnn...

Strengths and weaknesses of controllable animation techniques .

Basic motion values: key-times, time-bounds, duration, and
AAVEIDS L

Motion functions: time projections and kinematic operators.....

Terminologyvonei i

Range of effort in Laban notationc.

Distribution of user-study ratings for the real walking verb ex-
ample. “bH” represents what the user perceived as “most natu-
ral”. If our system were unable to generate convincing motion,
all motion-captured examples would receive a “57.
Distribution of user-study ratings for the real reaching verb
example. “5” represents what the user perceived as “most nat-
ural”. If our system were unable to generate convincing motion,

all motion-captured examples would receive a “57.

Basic motion values: key-times, time-bounds, duration, and
AAVEIDS L

Motion functions: time projections and kinematic operators.....

42

184

184

193

xxil

List of Algorithms

2.1
3.1
3.2
4.1
4.2
5.1
5.2
5.3
5.4
5.5

Positioning the character globallyl, 12
Steps t0 TeoTIentoii 60
General reorient and reposition ... 61
Basic clustering scheme ... 128
Improved clustering algorithm.................... 130
Reseting the times............cooo 147
Verb-graph increment functionoooc 149
Updated verb-graph algorithm 152
Simple gesture positioning.............cooooiiiiiiiiiiiiii 163

Multigesture positioning algorithm....................o. 164

Chapter 1

Introduction

Conveying emotion in motion has been a paramount goal of human figure
animation research. More than simply enabling virtual actors to perform a
set of tasks, true believability requires them to act with style and aplomb,
daintiness and reserve, wonton assuredness, unidentifiable likability, brazen
sex appeal, or with the villain’s craven design.

Control of emotion in conjunction with control over the basic form of a
motion has been difficult to achieve. Verbs, the actions one takes and adverbs,
the qualifiers which modify those actions are the two key metaphors used in this
dissertation. Providing the ability to construct verbs, controllable animations
parameterized continuously over a set of adverbs, is the central goal of this
work. Leveraging the talents of an animator or the qualities of motion capture
without sacrificing controllability, our verbs help forward the goal of providing

emotional control in motion.

1.1 The demands of interactivity

To list emotion in motion as something yet to be achieved may appear a mis-
categorization. Luxo Jr., Pixar’s first great animated short, for example, was

replete with aesthetically rich motion. It was, however, a static piece, re-

maining the same at each watching. Its designers painstakingly crafted each
motion and decided when it was complete. The research community, on the
other hand, has largely been concerned with interactive, non-scripted anima-
tion. Each run-time instance of an interactive character can yield a novel
performance requiring no additional input from an animator. When interac-
tive animations can achieve a degree of quality like the great animated works,
then the world of three-dimensional games, virtual actors and avatars, online
shared environments, and intelligent agents will be a great deal more convinc-

ing.

1.2 Paths to control

Research into controllable human figure animation can be divided into three
major groupings: procedural, dynamically simulated, and interpolated. Pro-
cedural animation uses code fragments to derive the degree of freedom (DOF)
values at a particular time. The procedures can be as sophisticated as needed
to provide different motion styles or to react to different conditions of the simu-
lated environment. Writing motion procedures, however, is not how animators
choose to work. Dynamically simulated figure animation uses controllers to-
gether with a simulated human to generate motion. The degree to which this
method succeeds is bounded by how accurately human motion is understood
and modeled. Both procedural and dynamic methods have the disadvantage
that they cannot leverage the talents of classically trained animators and that
they do not easily make use of motion capture technology. This is important
since animators and motion capture systems each produce compelling results.
To leverage their qualities, a system must use what these resources provide.
Interpolated animation is the third major grouping. This method uses

sets of example motions together with an interpolation scheme to synthesize

new motions. The primary problems of this approach are in providing a set of
meaningful, high level control knobs to the animator or runtime system, main-
taining the aesthetic of the source motions in the interpolated motions, and
motion extrapolation. Another consideration is the difficulty of acquiring the
examples. Each is precious. Additionally, for an interpolated motion scheme
to be used in a run-time environment rather than earlier in the production

pipeline, it must be efficient.

1.3 Verbs & adverbs

Verbs € Adverbs addresses these issues while providing controllable motion
usable in a runtime environment. Through the creation of parameterized mo-
tions, which we call “verbs” parameterized by “adverbs”, a single authored
verb produces a continuous range of subtle variations of a given motion at
real-time rates. As a result, simulated figures alter their actions based on
their momentary mood or in response to changes in their goals or environ-
mental stimuli. For example, we demonstrate a “walk” verb that is able to
show emotions such as happiness and sadness, and demonstrate subtle vari-
ations due to walking uphill or downhill while turning to the left and right.
Emotional and structural control are handled using the same mechanism. Aes-
thetics of the source material are maintained and used in the synthesis of new

motions as well.

1.4 Higher-level control

Interactive systems need one other major mechanism. Verbs, by their nature
are succinct motions, like walk-cycle, reach, wave, etc. We do not seek to

encapsulate all of a character’s motion for an entire script in a single verb. Be-

ing able to control an actor’s happiness, for example, while he played through
an hour’s worth of pre-planned actions would not be particularly interactive.
Interactive systems, therefore, make use of smaller units of animation.

The goal, however, is to yield an overall motion which looks like it could
have been planned in advance and carefully crafted offline. One of the primary
telltales that a motion is composed of pieces are awkward transitions. Smooth
transitioning, explained in Section 5.5 and Appendix B, address this problem.

Verbs, nodes in a graph, and transitions, arcs in a directed graph form
a new unit: the verb-graph. Combined with algorithms to enforce reason-
able root motion and enforce continuous adverb change, it is possible to make
smooth controllable animations composed of pieces with seamless transitions.
The verb-graph becomes the controlled object rather than the verbs in a run-
time system.

This dissertation will detail the preparation of example motions, the
constructions of verbs, a multi-resolution radial basis function interpolation
scheme, artist refinement of verbs, transitioning between verbs, and the verb-
graph. Together, these pieces can be used to create an interactive animation

system.

1.5 Organization

There are many terms and functions to be defined as this thesis progresses.
Each will be described in turn, but the reader will find Appendix A contains
the complete motion formalism, which is defined piecemeal in Chapter 3 as
new concepts are added.

This dissertation began with an introduction describing the Verbs & Ad-
verbs technique with some of its results. The following chapter is an overview of

human figure animation, placing the Verbs & Adverbs system in context. Fol-

lowing the overview chapter, Chapter 3 discusses the acquisition of examples,
the process of taking raw motion capture or hand animated data and putting
it into a canonical form from which verbs can be constructed. This chapter
also introduces the motion formalism, a key abstraction upon which all ani-
mation objects depend. Chapter 4 is a discussion of constructing verbs from
sets of examples, multi-resolution radial B-spline approximation, and time-
warping. Verb-graphs, the topic of Chapter 5, provide the glue with which
interactive animation systems can be constructed from verbs and transitions.
Chapter 6 summarizes results and provides an analysis of a small user-study.
Finally, conclusions and a discussion of future directions appears in Chapter 7.
Appendix A, as mentioned previously, summarizes the motion formalism and

Appendix B describes the side-topic of torque-minimal transitioning.

Chapter 2

Human figure animation

overview

When most people hear the word “animation,” they think of classic two-
dimensional animation such as great Disney masterpieces like Snow White
or Cinderella. These works are truly 2D creations. That the rolling magical
landscapes beyond the castle walls looked far away was due to the artist’s
illusory skills. Any change in the position of the virtual camera in the scene
would require the artist to paint new images.

Three-dimensional computer graphics generates a virtual environment,
which can be viewed from any angle, even cinematically uninteresting ones. In
this sense, it is a very free and unrestricted medium. Virtual camera movement
can be provided by the computer so as to not destroy the illusion of solidity.
Characters in 3D environments can more easily interact with one another
or with objects in the environment while still allowing unrestricted camera
motion. A character picking up a cup in a 3D environment, for example, has
a well-defined problem to solve. One possible solution is found in [123]. The
2D problem may seem simpler at first. The problems of registering (aligning)
the hand of the 2D character, or sprite, projecting the correct view of the cup

for an arbitrary camera angle, and placing the cup back on the table so that it

actually appears to be on the table show that 2D animation is in fact harder
in some regards.

This chapter will overview 3D figure animation research, the issues and the
different paths to resolving these issues developed by researchers in the field.
Verbs € Adverbs is an interpolated animation technique, but understanding of
competing approaches will be valuable to the reader in gauging the qualities
and effectiveness of the technique.

Three-dimensional animated characters are known by many names. Char-
acter is one often used here. Actor, virtual actor, or synthetic actor are other
terms used in this thesis, each made popular by the work of the Thalmann and
Magnenat-Thalmann who seek to make synthetic actors as lifelike and com-
pelling as living actors [137]. Awvatar, a term made popular in Neal Stephen-
son’s influential novel Snow Crash [134], denotes the virtual manifestation of
a living user. Two other terms, figure and articulated figure are terms I'll use
heavily in this thesis.

A useful way to view many of the notions presented in this chapter is
a set of levels of abstraction. The chapter will progress from a low level of
abstraction to higher levels. Verbs & Adverbsis a mid-level system. Figure 2.1
shows the levels from low abstraction at the bottom to high at the top. This is
a chart for a single character. Crowd behavior and multi-character interaction
are also important and will be covered in this overview briefly. Verbs ¢4 Adverbs
is an example of interpolated animation. Badler [5] treats these topics much
more extensively in his latest virtual humans work. Here I am concerned solely
with abstractness as it relates to the motion of one character.

Some useful overviews have appeared recently which may prove useful to
the reader. Allbeck and Badler [1] frame the problem of 3D articulated figure

animation providing a healthy snapshot of the field with extensive bibliog-

» high

High level planning

Behavior modeling

Biomechanics / dynamics simulation
Torque-minimal motions (spacetime optimization)
Force / acceleration calculation (forward dynamics)
Procedural animation

Interpolated animation

Inverse-kinematic positioning

Interpolation between stills

Motion playback

Rigid-body articulated figures (kinematics)
Disconnected moving objects

abstractedness

low -

Figure 2.1: Levels of abstraction in figure motion

raphy. They look to answer how close animation research is to fulfilling the
vision in Snow Crash. Likewise, Earnshaw synopsizes some of the primary
virtual humans work currently underway in [43]. Other traditions may prove
useful in the understanding of animation. Dance and human motion analy-
sis, for example, are tied deeply to human figure animation. Bartenieff and
Lewis [17] describe the field of motion analysis. Of particular note is Laban
analysis, used in the dance community, which seeks to describe in a systematic

qualitative way the subtleties of human motion.

2.1 Forward kinematics

Disconnected objects moving in space is the lowest reasonable level of ab-
straction for figure animation. It is a useful level for detailing the motion,
or kinematics, of simple rigid body objects like tables, chairs, and, of course,
teapots. Simplicity here refers not to the geometric complexity of the ob-

jects, but to the fact that they have no moving pieces. Objects composed

2

Z

Figure 2.2: Degrees of freedom

of sub-objects, which move in relation to one another, are known as articu-
lated objects. The position and orientation of any simple object or part of a
more complicated object can be described using six numbers: three to trans-
late along the X, Y, and Z axes, and three to rotate around them each in
turn. The last three values are called Euler angles and they together with
the translational components are shown in Figure 2.2. Each of these values is
called a degree of freedom and represents one manner in which an object can
be positioned or oriented. These six degrees of freedom (DOFs) together can
position and orient an object arbitrarily in space. Euler angles are the most
widely used formulation, despite having inherent problems for certain opera-
tions such as motion blending, something done here extensively. Quaternions,
described by Shoemake [129] [130], Duff [42], and Barr [16], provide a more sta-
ble representation. They are used here for transitioning (Section 5.5), though
not blending as our motion capture analysis method described in Chapter 3
alleviates the problems normally associated with Euler angles with respect to
motion blending.

A 3D character like a person is traditionally constructed from smaller
units. A human would likely be made up of a torso, upper-arms, forearms,

hand, head, thigh, lower-leg, etc, depending upon the desired level of com-

10

plexity of the figure. Chadwick [31] provides a good overview of linked figure
animation. Most of the results shown later in this thesis use a 44 DOF model
with 16 major body segments. This has been enough to yield believable human
motion without too many extraneous DOFs. More accurate models, for exam-
ple those that include fingers and toes, can certainly be designed. Nedel and
Thalmann [109] use a 62 DOF model with 31 separate body segments. Mau-
rel, et. al. [97] describe an even more accurate model of the human shoulder
complex, the part of the body which causes the most trouble since it is not well
approximated by the articulated rigid body abstraction. At eighteen DOFs per
shoulder, however, it may not be practical for use in many circumstances and
may be cumbersome for animators. Badler describes skeletons with multiple
levels of detail in [7] and [5], which can make practicality and correctness less
at odds.

Articulated figure movement is described hierarchically. Motion of one
part of the body, like the knee, is expressed in terms of its parent body part.
Likewise, movement of one part of the body effects all the subordinate parts of
the body. For the knee, the ankle and foot would probably be subordinate and
the center of the hip would likely be the root point. The root joint is special in
that it is used to position and orient the entire body in the global coordinate
frame (or any frame to which the body is placed subordinate). Likely roots
are between the hips, the feet, and hands. Typically the root is chosen based
upon the current action. For example, a character hanging from a handhold
would likely be rooted at that hand.

The basic unit of the articulated figure is the joint or mode. There
are many ways to define joints, some more general than others. Denavit-
Hartenberg notation is a widely used general formulation and is detailed in [41].

In this thesis, a simple formulation of joint will be used. Joints each

11

have one associated motion (DOF), a translation or rotation along or about
one of the principle axes. Translational joints are referred to as prismatic and
rotational as rotary or revolute. Joints are offset from and parented to another
joint save for the root which has no parent. Joints have a potentially empty

set of child joints. A joint, therefore, can be defined as
J=4{o0,D,C} (2.1)

where o is the vector offset relating the joint to its parent joint, D is the type
of motion, to be shortly defined, and C' the set of child joints parented in the
joint J. D can be a translation about the X, Y, or Z, or a rotation about
one of those axes. Additionally, the joint can have no motion, indicating that
it is an end-effector. The end-effector joint has no motion or children, just an
offset. It is a place onto which objects are grafted or where interaction with the
environment likely occurs. Typical effectors are the fingers or palm. Multiple
DOF joints, such as the shoulder, are created by using multiple one-DOF joints
with zero-length offsets.

The position a character takes when all DOFs are set to zero is alternately
called the birth, home, or rest position. This configuration is due entirely to
the effect of the sums of the joint offsets from the root out to the parts of
the body. When DOFs are not zero, the position of the body parts can be
described by matrix multiplication. Figure 2.3 shows a two link-arm. Global
DOFs are shown in green and hierarchical DOFs shown in red.

The global position and orientation of a character can be determined for

the hierarchical figure using the recursive function Algorithm 2.1.

Figure 2.3: Hierarchical vs. global motion for a two-link arm

Algorithm 2.1 Positioning the character globally

GlobalPosition (J, M,)

{
DOF motion — use one
1 000] [1 o0 0 0
01 0 0 0 cosd sind 0
00 10 0 —sind cosd 0
' d 00 1| [0 o0 0 1
offset from parent X —translation X —rotation
A - - _
1 0 0 O cosd 0 —sind 0
1 0 0 O
1 0 0 0 1 0 0
01 0 O
JM = M,e . 00 10 sind 0 cosd 0
0 0 1 0
0 d 0 1 0 0 0 1
r y z 1 - - -
Y —translation Y —rotation
1 0 0 0 cosd sind 0 0
01 0 0 —sind cosd 0 0
0 0 1 0 0 0 1 0
00 d 1| | o 0 0 1
Z—translation Z—rotation

for all children J.C;

GlobalPosition (J.C; , J.M)

13

J is the joint for which the global position is being calculated. M, is the
global matrix of J’s parent. The x, y, and z values are the offset of J from
the parent. The joint’s DOF value is d. To position the entire character a top
level call is made with the character’s root for J and the identity matrix [
for M,. The joint is very reminiscent of the coordinate frame and it is not
surprising that 3D articulated figures are very naturally created in a retained

mode graphics architecture.

2.2 Keyframing

As Lasseter pointed out in his SIGGRAPH’87 paper Principles of Traditional
Animation Applied to 3D Computer Animation [85], 3D animation is a creative
process much like its 2D predecessor. Similar techniques are used by animators
in order to create stunning work. Thomas and Johnston’s landmark book
Disney Animation— The Illusion of Life [138] describes these principles, like
anticipation and ease-in/ease-out, in detail.

Hand animated 3D pieces are typically constructed by the animator using
a process known as keyframing. Important poses of the character are hand
designed and placed in time. The in-between frames are generated by an
animation system, such as SoftImage™" or 3D-Studio/Max™". The animator
refines the keys and adds new ones as necessary until satisfied with the result.
Maestri [94] provides a good overview of this process. Steketee and Badler
describe keyframing techniques and some motion transitioning in [133].

The resulting motion data is a set of DOF curves, which when applied to
the appropriate skeleton and played back at the correct rate, reproduce the
original motion. A DOF curve is a curve parameterized by time and which
yields values for one DOF. A DOF curve is one way to implement a DOF

function and is the way typically used in this dissertation. If the motion data

14

is sufficiently continuous, storing every frame is wasteful. Human motions are
usually well represented using a smooth representation since (in general) we
make smooth motions. Piecewise-linear, B-spline, hierarchical B-spline, and
wavelet representation would all be useful ways to approximate the frame-by-
frame data. In this thesis, we typically use B-splines.

While all the basis function types are useful, some are more desirable
than others. Compression and fidelity, as always, are the two competing goals
when choosing the correct basis function for approximating data. This is an
especially important concern for motion capture data since it is copious in
quantity. For example, a soccer animation data-set used in [124] takes a great
deal of space in its raw form: 215,650 coefficients for roughly 2.7 minutes of
animation.

What becomes apparent from an inspection of the data, however, is that
the curves are relatively free of high-frequency information. A small set of
coefficients of smooth basis functions will maintain high fidelity. A number of
candidate encodings could be chosen. As stated previously, this thesis primar-
ily used a B-spline representation. Furthermore, not all the DOF curves have
the same curviness (frequency). Many of them are very smooth, requiring far
fewer coefficients. Coefficient requirements are shown in the table for different
quality ratings. Capin, et. al. [28] explore the bandwidth requirements of
human motion data over a networked environment.

A wavelet representation is also likely to be useful for motion data, though
no analysis of it has been performed here. Wavelets would be particularly
useful for progressive transmission and refinement over a high latency network

like the internet. The effectiveness of wavelet representations has been well

established by [58] [91] [48].

15

2.3 Inverse kinematics

Forward kinematics positions a character globally given a set of DOF values.
Inverse kinematics determines a set of DOF values which will yield a desired
global configuration. Two standard methods involve linear and non-linear
minimization of error between desired and current global configuration. Each
of these methods is iterative and highly dependent upon starting guess.

If the initial guess is sufficiently close to the desired configuration, a sim-
ple linearization can be used. While kinematic positioning is non-linear (Al-
gorithm 2.1), it is sufficiently linear for small changes of the DOFs. Iterative
improvement, therefore, converges to a solution. The DOF values needed to

satisfy a kinematic constraint can be found by solving the linear system
JAO = Ax (2.2)

where J is the Jacobian of the DOFs with respect to the desired global con-
straint, Ax the error vector between goal and current, and A8 the solution.
By iterating through each of the constraints, the figure’s configuration will
likely converge to a solution satisfying each. This cannot, however, be ensured
since articulated figure positioning is non-linear, as was seen in Algorithm 2.1
and since two or more constraints may vie with one another if they are in-
compatible, such as might occur with a knee and foot constraint further apart
than those joints actually are. Typically, this technique is useful for one con-
straint or sets of constraints which do not interfere with one another, such as
might occur if each of the extremities of the body were constrained within the
workspace of the figure. An overview of this technique can be found in Gi-
rard and Maciejewski[54]. Another good source is Watt and Watt [143] or [22].
Maciejewski [92] describes parallel network approach for solving 1K problems

using this technique.

16

Figure 2.4: Redundant IK solutions

A much more robust, though slower, method that can handle multiple
position and orientation constraints simultaneously was developed by Zhao
and Badler[150]. The goal is to minimize the non-linear cost function F,

F(©)=>)_ ((PjeJ(G) — P>+ (00(0) = 03)” + (01,;(©) — Ol,j)2> (2.3)
J
where P;(0), Op;(0), and O, ;(0) are the position and orientation vectors
for the jth joint and]5j, Oo,j, and Ol,j the desired position and orientation
vectors. The paper details the differentiation of this cost function £ which
enables minimization using a robust non-linear solver such as BFGS [53].

Each of these techniques is sensitive to its initial guess. This causes prob-
lems since 3D manipulators are (in general) redundant. Figure 2.4 shows
two possible solutions a two-link manipulator might take to position the end-
effector on the green dot. In general, such as with a three-link arm positioning
to the green dot, there are an infinite number of solutions.

Furthermore, there is no guarantee that a similar inverse kinematics prob-
lem yield a similar DOF values. An epsilon change in the constraints may
trigger a large change in resulting DOF values. Rose et al [124] dealt with this
problem by solving for IK constraints over the whole of the motion rather than
on a frame to frame basis, dubbed spatio-temporal 1K. Integration of error
coupled with a continuous representation of motion (in that case B-splines)

yielded smooth 1K solutions. Michael Gleicher [55] [56] uses a similar, more

17

efficient, technique to achieve impressive results in retargetting motion from
one articulated figure to another. Inconsistent 1K causes particular trouble to
motion capture analysis, as will be explored in Section 3.7. That section will

detail ways to combat this problem in that light.

2.4 Motion capture

Hand designed animations are time consuming to produce and can lack the
highly realistic look desired for sports games or for animation composited into
feature-length (non-animated) motion pictures. Motion capture is a popular
way to acquire motions that convey gritty realism to the viewer. Originally
this technique grew out of the motion analysis needs of the biomechanics com-
munity, but now is firmly in the service of computer games and the motion
picture industry [116].

Motion capture is more like puppetry or physical acting than animation.
A human actor, combined with a sensing technology is the way pose informa-
tion is extracted. An analysis phase fits this pose information to a hierarchical
articulated figure. Over time, changes in pose produce an animation. Motion
capture systems are commercially available. The three main types are optical,
magnetic, and exoskeletal. At the present time, no type is clearly superior;
each has useful qualities. Figure 2.5 shows an example of each type of motion
capture system.

Optical systems use markers placed on the body together with multiple
calibrated cameras to extract global 3D position information. Occlusion is
this technique’s primary flaw, though it produces some of the most accurate
data and allows the greatest range of motion for the motion capture actor.
Occlusion occurs when one or more of the cameras cannot sense a marker due

to the actor’s body being in the way. Cost, however, is a practical limitation,

= Adaptive Optics, Inc.

Analogus Gypsy

Exoskeletal

Figure 2.5: Motion capture systems

18

19

as an optical system is typically three to four times as expensive as a magnetic
system.

Magnetic systems rely on a magnetic field and a set of sensors attached
to the body. Occlusion is not an issue and orientation data can be read along
with position, which is a plus. Magnetic systems pose numerous challenges,
however. Ferrous metals will disrupt the field, so metallic props cause prob-
lems. Wooden props, put together with brass nails and screws, are often built,
as in the wooden racecar built as a prop for the motion captured pit crew in

(™) "as shown in Figure 2.6. Another problem is

Microsoft Precision Racing
the cabling. Even non-tethered systems seriously restrict the range of motion
available to the motion capture actor. The extent of cabling can be seen in
Figure 2.5. Magnetic motion capture is constraining. Hiring actors able to
overcome the awkwardness of the apparatus is key to getting quality motion.

Exoskeletal systems fit the actor with a metal exoskeleton that moves to
conform to the motion of the actor. This motion is recorded through various
angle and length sensors built into the exoskeleton. This method is the most
restrictive one to the actor’s range of motion. Falling would likely prove a
costly and painful mistake. Also, as none of the sensors is global, error builds
up from the root of the exoskeleton, typically between the hips, to the ex-
tremities. This can cause unacceptable drift in position and orientation of the
hands and feet.

An interesting twist on the exoskeleton is to remove it from the actor.
Then the exoskeleton becomes an input device for stop-motion animations
like the great movies of Ray Harryhousen. Digital Image Design sells one such

(™ " shown in Figure 2.7.

system, the Monkey
Considerable literature exists on using and editing motion capture data in

animation, (e.g.,[6] [26] [112] [124] [148]). daSilva, et. al., propose an anima-

Figure 2.6: Motion capture phases for Microsoft Precision Racing

Figure 2.7: Digital Image Design’s “Monkey”

20

21

tion system based on motion capture data incorporating methods for pulling
motions apart, concatenation, transitioning, etc. in [37]. Editing suites were
also described in many of the previously mentioned papers and are embodied in
successful commercial products like Kinetiz Character Studio 2.0™ and the
kinematics software from Nichimen Graphics. Lamouret and van de Panne
cut, paste, and modify motions from an example motion database to fulfil
animation tasks in [83].

Motion capture for use in animation has been surveyed in [96] and vari-
ous descriptions of the end product of its use have appeared (see, for exam-
ple, [93] [66]). The work by Molet et al. [105] gives an alternative technique
to inverse kinematics for going from sensors on an actor to an animated artic-
ulated figure.

As will become clear later, motion interpolation is much simplified if a
consistent treatment of DOF angles is generated by the motion capture analysis
for a set of similar motions, such as a repertoire of walks. As motion capture
data is noisy, robust motion capture processing can be the difference between
a process improvement or process nightmare. Chapter 3 will detail the process
developed in support of the Verbs & Adverbs system. Additionally, the motion
capture system was used for the commercial products Microsoft Baseball3D™"

and Microsoft Precision Racing™".

2.5 Parameterized motion and interactivity

As mentioned in the introduction, control over motion is an essential require-
ment for interactive animation. Parameters, control variables, are the way an
animation is directed from one moment to the next. Motions can either main-
tain state or be stateless. Motions with state “remember” and can use that

knowledge to make judgements regarding future character positions. State-

P I—

M

no state

has state

22

Figure 2.8: Motion M produces DOF values © given time 7 and control pa-

rameters p. State information s may be kept from one iteration to the next.

|

H

Pro

Con

Has-state

Decisions based on history
Non-repetitive behavior

Dynamic simulation

Hysterisis — history dependent
Unidirectional time (in general)

Sensitivity to time step

No-state

Rewindable

Not sensitive to time step

No dynamic simulation

No reasoning about past

Table 2.1: Trade-offs in stateless vs. stated motions

less motions take as input only the time variable and the control parameters.

Figure 2.8 depicts these two motion types. There are reasons for each kind

of motion. Some trade-offs are listed in Table 2.1. While hysterisis can be

used to form more complex actions based on past actions, keeping state can

be restriction. It is listed in the con category for that reason. Likewise, the

inability for stateless systems to reason about the past is listed as one of their

cons.

Parts of the Verbs & Adverbs system are stateless (verbs - Chapter 4) and

some have modest state (verb-graphs - Chapter 5). One important aspect of

the system is that no part is sensitive to the size of time-steps, thus time-steps

can grow arbitrary large as system resources are balanced at runtime. Each

of these issues will be addressed in the appropriate sections.

23

2.6 Dynamics-based motion

Forward dynamic simulation generates the behavior of objects in a virtual
space given a set initial conditions, forces and torques acting upon the bodies,
and descriptions of the dynamic properties of the objects. No one has done
more to acquaint the graphics community with the uses of dynamic simulation
than David Baraff. His papers detail rigid body dynamics [9] [10], friction [11],
non-rigid dynamics [12], efficiency concerns [13] [14], and, most recently, cloth
dynamics [15]. Efficiency is a major problem with dynamic simulation and
limits its usefulness in the general case. Much of the work in this area has in-
volved finding efficiency gains for special case problems, as Milenkovic [104] did
for systems of large numbers of tightly packed objects. Using modal dynamics
yields Pentland and Williams [111] some interesting effects and efficiency gains.
Some of their objections to other techniques are alleviated by [51]. Metaxas
and Terzopoulos [102] describe how to simulate dynamically deformable ob-
jects. Witkin, Welch, and Gleicher describe inter-active-time modification to
dynamical simulations in [146] and [149].

For dynamics to be used with articulated figures, a dynamics formulation
which supports hierarchical linked figures must be used. The formulation of
the dynamics equations directly effects the efficiency of the algorithms using
to compute it. Le Grange’s formulation has been used, but suffers from being
exponential in the number of DOFs [147]. Well understood compilation tech-
niques like common subexpression elimination can be used to reduce the size of
the resulting expression trees considerably [91]. Complicated, linear-recursive
formulations were developed by Featherstone [47], Hollerbach [76], and Bal-
afoutis and Patel [8]. Balafoutis’ forms the most efficient formulation to date
and uses a tensor formulation with clever identities that reduce the equations

considerably. Schroder and Zeltzer [128] and McKenna and Zeltzer [100] used

24

Featherstone, Liu and Cohen [89] used Hollerbach, and we used Balafoutis and
Patel in [124]. That formulation is detailed in Appendix B.

Dynamic simulation, however, presents a serious problem to the animator:
uncontrollability. To make his compelling dynamically simulated sequences,
for example, Baraff had to iteratively tweak the initial conditions in order
to have it achieve a desired result, not an interface useful to your average
animator. Interactive animation requires that a system or user be able to
direct the outcome of the animation. Barzel, Hughes, and Wood [18] discuss
this problem and make a key observation: there is enough uncertainty in
the understanding of dynamics properties and simulation such that one can
“fudge” the results of a dynamic simulation to achieve a desired effect and still
have it look physically “correct”. Likewise, Chenney and Forsyth [33] discuss
techniques for not simulating things which are not seen by the user. Events
not seen by the user are ones which can be heavily modified without breaking
the illusion of physical realism and controlling such events could help, though
not solve, the problem of directing characters.

Two approaches to overcoming the controllability problem are discussed
here. Spacetime optimization and controller optimization are the two primary
ways dynamics has been used for generating motion. Spacetime optimization
determines DOF trajectories given initial conditions, a set of constraints which
frame out the overall animation, and a quality function to be minimized. It is
an open-loop process and can therefore be categorized as stateless. Controller
optimization couples the forward dynamics process with a feedback controller
to achieve a desired animation by modifying a set of control parameters, like

torques, from one time-step to the next. optimization

25
Spacetime optimization

Forward dynamics can be used to calculate the position of a character over
time given an initial state and a set of torque functions for the DOFs. It could

be expressed as

P:f(IaT)

where P denotes a character’s position over time, I the initial position and
velocity of the character’s DOFs, T the torque functions, and f the forward
dynamics process. Typically, everything is known save P.

Inverse dynamics calculates the torque functions required to achieve a

given set of position functions. In the terms above,
T = fY1,P).

Here the position and initial conditions are known. The inverse dynamics
process, f~!, calculates the torque functions need to achieve the given P and
I.

Isaacs and Cohen [79] described the DYNAMO (DYNamic MOtion) system
at SIGGRAPH'87. It incorporated ideas from keyframing and dynamics. The
system used keyframing to generate a position function P for a subset of the
DOFs in a system. Given these trajectories, torques could be calculated on the
other DOFs using inverse-dynamics. Positions could then be calculated for the
reamining DOFs using forward dynamics. Figure 2.9 shows a problem solved by
this system. The whip handle trajectories are known, specified by an animator
with keyframing. Given that, torques could be calculated on the whip DOFs.
From these, position trajectories for the whip could be determined.

Witkin and Kass [147] first coined the term “spacetime constraints” in
their SIGGRAPH’88 paper. Unlike the work of [79], these constraints could be

on position, velocity, or acceleration of the joints. Given the P, a set of force

26

Step 3: Whip DOFs determined using f

~— Step 2: Torque on whip calculated by f-1

Step 1: Whip handle keyframed

Figure 2.9: Whip motion can be generated using hybrid kinematics and

inverse-dynamics

functions T are generated satisfying P. In general, there can be an infinitely
large (or empty) set of such functions. The quality of the solution is rated
using a fitness functions, typically used energy. A non-linear optimizer is used
to drive the used energy towards zero.

Spacetime optimization thus attempts to solve for the position functions,

subject to a set of constraints while minimizing a given quality rating.
P=S8(C,0)

where P is unknown, S indicates the spacetime process, C a set of kinematic
constraints, and O a fitness function. Typically, the fitness is proportional to
the energy expended, or

O(P) o T?

the square of the torque functions integrated through time. Spacetime con-
straint optimization, therefore, often uses inverse-dynamics in its inner loop

to rate the quality of a proposed position function, P. The constraints could

27

be set either by an animator or procedurally by a system. If the optimization
process were sufficiently fast, this could be done in real time. For complex
human figures, however, this goal has not been achieved, at least for torque-
minimization spacetime optimization, due to the complexity of constrained
non-linear optimization and the time required to compute the quality function
O using inverse-dynamics.

Cohen [35] improves upon the initial work of Witkin and Kass in two
ways: representation and interaction. He changed the representation of the
DOF curves from piecewise-constant to B-spline, which is continuous and also
requires fewer coefficients (in general). By working with “spacetime windows”,
subregions of time for optimization, he enabled greater animator interaction
with the optimization. Liu, Gortler, and Cohen [91] note that by changing to
a multi-res representation, namely B-spline wavelets, faster convergence times
can be achieved. Speed improvements were also be achieved through compiler
techniques such as graph reduction. Liu and Cohen [89] later improve upon this
by switching to a better dynamics formulation. Refinements on the interface
enable easier animator interaction with the system in [90].

In Rose et al [124] we used the Balafoutis linear recursive dynamics for-
mulation for spacetime optimization of motion transitions for a human figure
with 44 DOFs. Quality transitions enabled the joining of two segments of
motion capture or hand animated source. The intuition for torque minimal
transitioning is from Burdett, Skrinar, and Simon [27]. Joint torques, they
found, are a reasonable predictor of metabolic energy. Experience has shown
that motion which minimizes metabolic energy looks natural. This leads to

the minimization problem:

T2
minimize e :/ E E;(T)*dr
T1 ,]

where E; is the energy function for the jth DOF. A more complete description

28

of this technique, the full motion equations, and results is found in Appendix B.

Controller optimization

A controller is an object that observes the state of a dynamically simulated
figure, directing it to perform some actions in order to meet a goal. Typically,
a controller is an object with three kinds of variables. First are the state
variables used to sense the system being controlled, such as a linked figure
existing in a dynamically simulated world. Control parameters encode the
desired state of the system. This state is the goal that the controller, in
concert with the simulated figure, is trying to achieve. Control parameters
may include things like speed or a desired 3D location, such as in [132] and
[141]. The inner workings of the controller (the controller function) transform
control parameters and state variables into actions, typically forces applied at
the joints. In other words,

T:f(S,C)

where T are the torques, f the controller function, and S and C the state
and control variables. Often, the controller function is itself parameterized by

another set of variables known as weights or gains, so
T =f(S,C,G).

This is an advantageous form since it allows a designer to construct the general
form for the controller and then tune it by manipulating the gains until a
desired result is achieved. Another option is to use non-linear optimization
to automatically find gain settings that cause a controller/figure to perform a
certain task.

This task, if stated simply enough, leads naturally to a fitness function

that rates the effectiveness of a proposed set of gains. An example fitness

29

Sensors hidden actuators
nodes

Figure 2.10: Sensor actuator network

function would be the magnitude of the distance traveled by the figure over
a certain period of time. The faster the motion, the “better” the controller.
Given a fitness function, optimization can be performed using a variety of
techniques to find an effective controller.

Sensor actuator networks is a model proposed by van de Panne and Fiume
[141]. A sensor actuator network, or SAN, is similar in form to a neural network,
though with time delays on propagation of values through the network. A layer
of sensors is connected to a layer of hidden nodes, which are in turn connected
to a layer of actuators that drive the system, as shown in Figure 2.10. Each
of the arcs has a weight that is determined by the controller optimization.
The weights for these arcs are the gain variables that tune the controller. A
node outputs 1 if its weighted input sum is positive, otherwise it outputs 0. If
the actuators receive a positive input, they apply torque to their DOF. Three
fitness functions were used in this work. One judged distance traveled, another
jump height, and a third location tracking. The optimization method used was
to build an initial set of random controllers (i.e. random weights on the arcs)
and then perform a hill climbing improvement on the most promising members

of the initial set.

30

A number of locomotion schemes like walking, running, or bounding were
discovered using the SAN formulation for a number of different figure topolo-
gies. Earlier work [142] used controllers of in the joint-torque state space to
generate motions like a back-flip or a parking car. Huang and van de Panne [78§]
use search to discover the parameters to tune a controller to get their articu-
lated figures to backflip and hop.

Ngo and Marks in Spacetime Constraints Revisited [110] describe a genetic
algorithm for finding coefficients for a stimulus-response model of motion— a
kinematic simulator with feedback control. The controller is structured as
a set of stimulus-response pairs which match joints, trigger conditions, and

desired response. A stimulus is a function of the form:

w (1 ~ tmax (A (v, — vg))2>

j
where the A; and v?’s are the values (gains) determined by the controller
search, v; the sense variables which gauge the state of the world, and W a
normalization factor. The highest valued stimulus at a given step determines
which response is activated for the next time-step. The response is a pose to-
wards which the character approaches. The stimulus-response model did not
have control parameters. The controllers could perform only one task. The
optimization method used a genetic algorithm, which is particularly adept at
finding good minima in complex (and potentially discontinuous) non-linear
spaces. Ngo and Marks’s use of the genetic algorithm for optimization is note-
worthy in the animation field. An extensive overview of genetic optimization
can be found in Holland [75] and Goldberg [57]. Using this formulation, dif-
ferent locomotion styles for different kinds of characters were generated.
Continuations to Ngo & Marks’ initial work are described in Auslan-
der, et. al. [4]. While these authors use the term “spacetime constraints”, this

is fundamentally different work from what is typically intoned by the phrase.

31

Their stimulus-response formulation is a closed-loop controller approach to an-
imation, which differs from the open loop energy minimization work of Witkin,
Kass, Cohen, et. al., or the kinematic constraint work of Gleicher.

Tu, Terzopoulos, and Grzeszczuk [139] [136] use dynamics, motion con-
trollers, and state machines to simulate artificial fish, including feeding and
predation. Grzeszczuk, Terzopoulos, and Rabbie [59] [135] describe learning
methods which can be used to generate the needed motion controllers. With
an eye to efficiency, Grzeszczuk, Terzopoulos and Hinton’s latest work [60]
learns to approximate accurate physically correct behavior.

Karl Sims took the controller search idea to a new level by specifying only
the simulator and the language in which creatures and their controller could be
described in [132] [131]. Using genetic programming, he developed a system
which could simultaneously find a creature’s structure and its controller in
order to select for such traits as speed, jump-height, or the ability to track a
user-specified source point in 3D. One interesting discovery he made is that
genetically-programmed creatures find bugs in a dynamic simulator. One such
creature oscillated at just the right frequency to cause an overflow bug so that it
could fly skyward with a healthy dose of free kinetic energy. The creatures Sims
found have been described as “spooky” in their behavior, bringing forth visions
of digital trilobites. This work is some of the most visionary in animation
research, combining dynamic simulation and genetic programming. It has yet
to prove effective, however, for human figure animation. The space of creatures
and controllers is very large; human figures moving in humanlike ways occupy
a tiny subspace. Koza [81] [82] provides the most extensive overview of the

field of genetic programming.

32
Biomechanics and its applications

The work on controller optimization, while quite interesting, has not lead to
controllable human figure animation, arguably the most important form of mo-
tion. It is unlikely, for example, that a search through creature and controller
space is going to discover human motion without guidance. Biomechanical
knowledge, therefore, has been integral for designing effective controllers for
human-like figures.

Biomechanics is a huge discipline spanning the robotics, biology, neurol-
ogy, and psychology fields. This section will detail some of the biomechanics
work that has proven the most useful to the animation community, together
with the successful applications to which this knowledge has been applied.
Biomechanics has been used by the animation community in many ways: ba-
sic dynamics, musculature, balance, arm positioning, and locomotion. TI’ll

overview a few of the contributions from each area.

Body and balance

Dempster and Gaughran’s Properties of Body Segments Based on Size and
Weight [40] describes the dynamical properties of the human body such as in-
ertia tensor and mass distribution. In macabre detail, this paper describes the
cadaver sectioning used to isolate the body segments studied and the meth-
ods for calculating the body’s dynamical properties. It was used by Hodgins’
group in designing their figures for their work in [70].

Chen and Zeltzer [32] developed techniques for simulating a human mus-
culoskeletal system. This work included a model of muscle shape, force, and
motion. Scheepers, Parent, Carlson, and May [127] describe a muscle model-
ing technique which makes use of the animator’s eye when defining the mus-

culature of the human form. Wilhelms and Van Gelder [145] show a similar

33

system which models muscle form and includes a skinning model. These last
two works did not seek to simulate the functioning muscle, but rather describe
the appearance of the musculature in certain configurations. In that respect,
these works are similar to the Verbs & Adverbs system in that they model the
phenomenon rather than the underlying process which give rise to it.

Badler’s Jack'™ system described in Simulating Humans [7] and in nu-
merous other publications, makes great use of biomechanical know-how. Mil-
itary anthropometry data, for example was used to define the range of size
for the Jack model. Lee, Wei, Zhao, and Badler [88] use knowledge of human
strength limits and planning techniques to synthesize motions. Zhao, Tolani,
Ting, and Badler [150] describe the use of optimal control to simulate human
movements. An example includes getting set up to take a basketball shot.
Metaxas [101] uses control techniques together with dynamical simulation of
articulated figures to achieve motions like bending, shooting, reaching, and
ladder climbing.

Balance is a key issue for a standing figure. Eng, Winter, MacKinnon and
Patla [45] show how certain angles are coupled to maintain posture during
upper body motions, like far reaches and dips. Forssberg and Hirschfeld [50]
perform experiments which show some of the muscle control triggers at work to
maintain posture during a differently executed motions. Boulic and Thalmann
use information about the mass distribution of the articulated figure together

with traditional IK techniques to solve balancing problems in [23].

Arm movement

In his often-cited paper An Organizing Principle for a Class of Voluntary
Motions [71], Hogan proposed that some human motions can be modeled to

optimize for minimal jerk, i.e. minimized rate of change of acceleration. Hogan

34

and Flash [49] performed experiments to confirm this hypothesis. Hogan de-
scribed how the human joints can be modeled as spring-like objects [73] [74],
or systems which relate displacement to force in a possibly non-linear, pos-
sibly discontinuous, possibly non-energy-conservative manner. He shows how
muscle coordination can be modeled in this framework. Hogan uses feedback
control of a dynamical system to control motion in [72].

Mussa-Ivaldi, et. al. [107] structure different 1K problems and the creature
performing them as a network. This network is used together with control
techniques to execute the 1K problems in a biomechanically sound way.

Bizzi, et. al. [19] show that a system more complex than equilibrium
points (points where the joint’s two muscles exert equal force) must be present
for motor control. Mussa-Ivaldi, Hogan, and Bizzi [106] perform experiments
to measure the restoring forces for arms which have been displaced from equi-
librium point postures. Dean and Briiwer [38] describe the interaction between
arm positioning movement and the presence of obstacles and their relation to
the usage strategies for the joints.

SIGGRAPH was first introduced to the arm work mentioned in the last
several paragraphs by Koga, et. al. [80]. This biomechanical knowledge, to-
gether with a motion planner was used to simulate a chess game between a
human and robot player. Biomechanics aided the realism of the arm motions
during chess piece manipulation. An earlier paper by Rijpkema and Girard
proposed using a knowledge base of preferred human grasping methods [123].
They created a system for performing high-level grasping motions able to deal
with different cup sizes, handle styles, and the like. While not modeling un-
derlying processes, the system used knowledge of the human phenomena to

create convincing grasping motions.

35
Locomotion

J. Rose and Gamble’s Human Walking [125] is the definitive collection of arti-
cles describing the kinematics, dynamics, and pathologies of human walking.
The ideas presented there, most notably gait-cycle information, were used to
advantage by Bruderlin and Calvert [25] to generate one of the most com-
pelling controllable human walking systems. Similar work [24] handles human
running.

McGeer [98] [99] studied walking as a passive rather than active dynamical
system. He found that very little force is needed to keep a walk going once
started, making walking a very efficient form of locomotion, a important but
not surprising result. To show this, he built physical passive robots which
could walk with only the kinetic energy potential of an inclined surface to
keep them going.

Legged Robots that Balance [118] describes the work of Raibert, Hodgins,
and others in building physical robots together with control systems able to
locomote through hopping, jumping, and running. Hodgins and Raibert [69]
[119] continued this work using improved controllers to create parameterized
motion and robot gymnastics.

Jessica Hodgins’ group at Georgia Tech has been the most active one
in recent years trying to create dynamically simulated human motion, as was
demonstrated in their film Atlanta in Motion. Hodgins, et. al. [70] use control
schemes to simulate human sports motions like running, pole-vaulting, cycling,
and jumping, many of which were seen in the film. Efficiency is a major concern
for dynamic simulation. Carlson and Hodgins describe a system for using levels
of detail on the simulator to make maximal use of a system’s computing power
in [29].

One problem with dynamically simulated motion is the time required

36

to tune the controller for a particular body. If the body changes size, gender,
weight, or age, this can impact the effectiveness of the controller. Hodgins and
Pollard [68] interpolate over the space of control laws to facilitate a change in
skeleton. The control functions are parameterized by gains which are interpo-
lated for multiple skeletons. By interpolating the control, for an action such
as running, they can alter the physical characteristics continuously from child
to adult or from male to female.

Faure and Debunne use dynamic analysis of walking data to generate a
biomechanical model of walking. Using this, they can then synthesize con-
trollers to generate walks in [46].

Laszlo, van de Panne, and Fiume [86] describe the use of closed-loop
feedback control to simulate human walking. They also describe the use of
controller interpolation to yield some control over the resulting animations.

At the present time, biomechanically simulated motions are inferior in
quality to hand-designed animations. This is due to an inadequate under-
standing of the human body in motion, not to a defect in the goal of using
a first-principles approach to animation. As the biomechanics community
produces a richer understanding of human motion and groups like Hodgins’
capitalize on that to produce ever-better animation, the appeal of interpolated
and procedural animation may decline.

This is not to say interpolated methods are destined to become obsolete.
It is unclear, for example, how a first-principles approach would model classic
(and unrealistic) animation metaphors like squash and stretch. It may very
well be that cartoon dynamics is much less amenable to biomechanical know-
how than real dynamics. Interpolated methods like Verbs & Adverbs, however,

will continue to be useful even in the presence of dynamically incorrect motion.

37
Synergy-based 1K and learning

Encoding knowledge of how much a particular joint contributes to a particular
kinematic task, a pairing known as a synergy, enables high quality inverse-
kinematics. This technique is not subject to the problems of biomechanical
implausibility associated with the other 1K techniques detailed in Section 2.3.
Much of the groundwork for this technique was developed in the Princeton
Human Information Processing (HIP) lab and robotics groups. The technique
has been considerably strengthened since and is currently being used by Katrix
Inc., for projects such as Ride the Comiz'™", a location-based game currently
at DisneyQuest™ in Orlando, Florida.

Motor synergies, collections of joint-gain pairs and neural-network learn-
ing were used to control Princeton’s planar, human-like robot, sLiMm, by Lane,
Handelman, and Gelfand in [84]. Gelfand, et. al. [52] compare three different
learning schemes for a human-like robot performing reaching tasks. Gulla-
palli, et. al. [62] use synergies together with a control system, to learn how to
perform human-like motions such as position/force control during a sanding
motion.

Learning systems may take too long to converge for complex tasks, so
Handelman and Lane [65] propose using supervised learning, where a human
operator nudges the learning algorithm into the correct region of the search
space from which the automated learning system can then converge. Once this
is done, more specialized control systems can be employed.

Synnergy-based 1K provides a good middle-ground between a purely kine-
matic system and a dynamic one. Dynamically correct looking behavior is

achieved without the expensive hit of a full dynamics simulator.

38

2.7 Procedural motion

Procedural animation uses code fragments to compute the DOF values at a
particular time. The procedures can be as sophisticated as needed in order to
provide different motion styles or to react to different conditions of the simu-
lated environment. Unlike dynamic simulation, these procedures can be very
efficient, thus allowing for real-time performance on contemporary hardware.

The Jack™" system has many parts which are procedurally driven, as is
detailed in [7]. Phiilips and Badler [114] use inverse kinematics to effect near
real time manipulation of human motion. Properties like balance are derived
using procedural use of IK.

Blumberg and Galyean [20] use competing procedural behaviors to gen-
erate an agent capable of responding to real-time human stimulus.

Latombe’s Robot Motion Planning [87] describes different schemes for gen-
erating path plans. These plan procedures can be used to effectively navigate
a creature through an environment.

Perlin’s Improv system is probably the best known work depending pri-
marily upon procedurally generated animation. Perlin and Goldberg use pro-
cedural animation together with noise functions to yield controllable anima-
tions in [112] [113]. Perlin also uses blending to handle transitions between
different animations. Some of Perlin’s recent work in 2- and 3-D facial anima-
tion is detailed in [44].

Procedural animation can be used to model actions of groups as well as
invidual creatures. Reynolds [120] [122] [121] uses non-global interactions to
yield emergent behaviors like bird flocking. Musse and Thalmann describe a
model of collision detection schemes in group behavior, so the characters can
behave reasonably in a crowd situation in [108].

Cassel, et. al. [30] describe a system for generating conversations, in-

39

cluding gestures and facial expression changes keyed to the dialog using the
Jack™" system.

Unfortunately, writing animation routines is a task which will alienate
most animators, who are the people with the most talent for designing quality
motion. Additionally, motion capture is not well suited for use with the pro-
cedural approach, though Perlin’s noise functions can be used to augment the
realism of a motion captured sequence. With these two sources of high-quality
animation potentially denied it, procedural animation will not be a complete
solution.

Levels of control for procedural motion is a common theme. Tasks can
be broken into smaller, more tractable subtasks. Cohen describes a three-
level interaction scheme and a learning methodology in [34]. Thalmann and
Thalmann [95] describe a decomposition of an animation system into MCMs, or
motion control methods. Badler [5] proposes a model, called a parameterized
action representation, for decomposing action and intends to build it upon
his PATNET (PArallel Transition NETwork) abstraction. Cremer, Kearney, and
Papelis describe HCSM, a framework for control in [36]. It uses hierarchical
finite state machines to control a driving simulator. Its framework, developed
by the operations community, may prove useful to the animation community.
Indeed, the commercial product Motivate™ made by The Motion Factory

uses a hierarchical finite state machine approach to control and simulation.

2.8 Interpolated motion

The final classification of parameterized animation is interpolated animation,
the class into which Verbs € Adverbs fits. Interpolated motions are constructed
by blending between and extrapolating from pieces of motion source, either

hand crafted or motion captured. The idea of altering existing animation to

40

produce different characteristics is not new. Unuma et al. [140] use Fourier
techniques to interpolate and extrapolate motion data. Amaya et al. [2] alter
existing animation by extracting an “emotional transform” from example mo-
tions which is then applied to other motions. For example, “anger” from an
angry walk is applied to a run to generate an “angry” run. Verbs & Adverbs
does not follow this approach in that it does not apply characteristics of one
motion to another, but instead assumes that the initial library of motions con-
tains these emotions. Unlike these two techniques, Verbs € Adverbs method is
not based in the frequency domain and thus can handle non-periodic motions
which earlier methods fail to capture.

Bruderlin and Williams [26] use multitarget interpolation with dynamic
timewarping to blend between motions, and displacement mappings to alter
motions such as grasps. Witkin and Popovi¢ [148] present a similar system
for editing motion capture clips. The former work is in the same spirit as
ours, and addresses many of the same difficulties, specifically the necessity of
selecting appropriate key times for interpolation and the consequent need for
time warping. One difference between the two approaches lies in the choice
of interpolation techniques: Bruderlin and Williams use multiresolution filter-
ing of joint angles in the frequency domain, whereas our technique decouples
solution representation from interpolation mechanism.

Both Wiley and Hahn [144] and Guo and Robergé [63] produce new mo-
tions using linear interpolation on a set of example motions. Both techniques
require O(2%) examples, where d is the dimensionality of the control space.
The Verbs & Adverbs technique using radial B-splines requires O(n) examples
to establish the baseline approximation and O(n?) to compute the resulting
answer. To compare, a Delaunay triangulation of the data would require

O(ncel@/2)) to compute, when d > 3.

41

The Verbs € Adverbs system also differs from the work of Wiley and Hahn
by using non-uniform time-scaling based on key events. While the uniform
time-scaling of Wiley and Hahn obviates the need for an animator to select
structurally similar poses during motions, it assumed that the repertoire of
motions being interpolated between must be very similar in time. When this
assumption is violated, oddities in the motion can result. Wiley and Hahn
also reparameterize and sample their motions on a multidimensional grid and
then perform simple interpolations at runtime. This requires computation and
storage exponential in the number of parameters.

Additionally, neither Wiley and Hahn nor Guo and Robergé discuss the
blending of subsets of examples, which would arise when new examples are
placed “between” old examples as a designer refines the interpolated motion
space. Our technique, on the other hand, is refined by more examples as
required. As Verbs & Adverbs uses an approximation method based upon
radial B-splines with compact support to perform the interpolation, examples
have limited effect over the space of animations, thus ensuring that subsets of
the examples are used at runtime as appropriate.

An important distinction in Verbs & Adverbs is that the interpolation is
performed simultaneously in real-time over multiple dimensions, such as emo-
tional content and physical characteristics. Although we apply the techniques
to interpolating trajectories characterized by coefficients of spline curves, the
methods presented here are also applicable to coefficients in the Fourier and
other domains. It may also be possible to apply similar ideas to control the
parameters of a physically based model.

In the context of autonomous agents, Verbs & Adverbs presents a back-
end for applications such as games, the Improv [113] system, and the work

proposed by Blumberg and Galyean [20]. The high level control structures

42

H Pro Con
Spacetime Stateless Mocap and hand animation difficult to reuse
dynamics Physical interaction with environment | Lack of biomechanics limits human realism
Slow (relatively)
Dynamics Deep understanding of motion Mocap and hand animation difficult to reuse
and Physical interaction with environment | Must maintain state
controller Controllers difficult to design
Slow
Procedural High level parameterization Mocap and hand animation difficult to reuse
animation Stateless or stated Realism dependent upon procedures
efficient
Interpolated High level parameterization Potentially loose parameterization
animation Stateless Realism dependent upon source material
efficient

Table 2.2: Strengths and weaknesses of controllable animation techniques

found in such applications are capable of selecting verbs and adverbs while the
work we present here provides the low level animation itself. Thus, we create
the motion in real-time for “directable” creatures as discussed by Blumberg

and Galyean.

2.9 Conclusions

Each of the four major parameterized animation techniques has strengths and
weaknesses. Table 2.2 illustrates this for each of the four styles of animation
studied here. Given this context of human figure animation, the Verbs &
Adverbs system can be well described. It is an interpolated technique and as
such needs one thing before all others: example motions. That is the subject
of the next chapter.

[21] [64] [77] [103] [117] [3] [126]

43

Chapter 3

Acquisition of examples

The most compelling animations in the 2- or 3-D realm are done using time
tested hand animation techniques augmented with computer assistance. The
computer, for the main part, is used simply for process enhancement, not
process reengineering. Motion capture for animation grew out of the biomech-
anist’s desire to track human motion in order to better understand its form.
Hardly a panacea, motion capture for animation is expensive and time con-
suming. Its ability to create “realistic” motions, however, can make it worth
the effort.

Procedural and dynamically simulated animations, like the work of Per-
lin [112] [113], Badler [7], and Hodgins [69] [119] [70] [68], have an advantage
over key-framed or motion-captured animations in that they are controllable
at run-time and can therefore be interactive. Unfortunately, these techniques
require an animator to express their vision in a way quite alien to their train-
ing. As was mentioned earlier, this dissertation details a method, called Verbs
& Adverbs, for creating controllable motion from motion capture segments or
hand-crafted 3D animation clips. This allows animators to continue working in
a way comfortable to them and leverages the effectiveness of expensive motion
capture data. Before the Verbs € Adverbs technique can be applied, however,

the designer must first obtain a set of good examples.

44

In this chapter, the example is examined. An example is an animation
clip in a particular form. A set of not overly strict requirements must be met
for a motion segment to be considered an example. Motion capture processing
is examined in the context of these requirements. A motion formalism is
introduced and a number of example-related topics are explored. A motion
editing system can be built using this formalism to assist the designer in the

construction of examples.

3.1 What is a motion-snippet?

In traditional animation, sequences are created with the goal of making scenes
and later, films. Interactive animation systems typically use a smaller unit of
animation, a self-contained sequence which could be called a motion snippet.
Examples of snippets would include punch, fall, reach, or a walk-cycle. Inter-
active systems involve ways to mix and match these snippets to form seamless,
reactive animation sequences.

Rich, parameterized snippets, verbs, form the basic unit from which a
controllable interactive system is built. Verb construction is the primary thrust
of this chapter and the next. Verb construction requires structured, rather
than random, motion snippets, i.e. good examples.

The skeleton, together with values for its degrees of freedom, defines a
static pose of the character. A motion is a changing over time of pose. In
procedural terms, a motion M is a function in the time domain which returns
a set of degree of freedom values.

Take, for example, a basic walk. Figure 3.1 shows a skeleton, this one
affectionately named George. George has 44 DOFs: 6 root DOFs and 38 internal
revolute DOFs. Figure 3.2 shows a pair of DOF curves for a basic walking

motion designed for the George skeleton, namely those of the knees. Note the

45

2 DOF
3 DOF

o 2 DOF

»
f+==e 3 DOF

3 DOF ¢ » 2 DOF
3 DOF ¢=¢ 5> DOJ

e «1DOF

¥ 2 DOF

Figure 3.1: George

Leftknee—xR

RightKnee—xR

-1

Figure 3.2: Knee DOFs for a walk

46

Figure 3.3: A simple walking motion

out of phase similarity of the curves, consistent with a biomechanical analysis
of the human walk cycle [125]. Figure 3.3 shows a time-lapse picture of this

walking motion.

3.2 The skeleton’s DOF ordering

The hierarchy of George’s DOFs is shown in Figure 3.4. Of particular interest is
the ordering of the first six DOFs that define the position and orientation of the
root relative to the global frame of reference. As the multiplication of rotation
matrices is not commutative, achieving the same global effect with different
orderings requires different sets of values. The choice of this order will affect
many of the algorithms presented in this chapter and of those in Chapter 5.
The order used in this work is the X, Y, and Z translations, followed by the
Y, Z, and X rotations. The algorithms presented in this dissertation will be
described in terms of this ordering.

The Y axis, in computer graphics, is typically the one pointing “up” from

47

Frame in which
George is located

Root
Xt, Yt, Zt, Yr, Zr, Xr
|

r T T T 1
L. Collar L. Hip Torso R. Hip R. Collar

Yr, Zr Xr, Yr, Zr Xr, Yr, Zr Xr, Yr, Zr Yr, Zr
L. Shoulder L. Knee Neck R. Knee R. Shoulder
Xr,Yr, Zr Xr Xr, Yr, Zr Xr Xr, Yr, Zr
I | I I

L. Elbow L. Ankle Head R. Ankle R. Elbow
Xr, Yr Zr, Xr zZr, Yr Zr, Xr Xr, Yr

L. Wrist R. Wrist
Xr, Zr Xr, Zr

Figure 3.4: The skeleton hierarchy

the ground plane. Thus, motions for a biped where the character is standing,
walking, or running, having the Y axis rotation first allows easy orienting of
the direction of the character. The initial DOF order is shown in Figure 3.5.

This DOF will hereafter be referred to as the character’s heading.

3.3 Motion’s relation to the skeleton

The skeleton is like a marionette with many strings to pull, those being the
degrees of freedom. Keyframing and motion capture, two techniques for de-
signing simple animation segments, were described in Sections 2.2 and 2.4.
Animations of this form have some advantages over procedural animations;
they easily leverage the talents of an animator or physical actor. One dis-
advantage, however, is their close connection to the skeleton for which they
were designed. A motion, when applied to a skeleton for which it was not
designed, is likely to produce unacceptable results. Most often this becomes
evident with visually obvious violations of kinematic constraints, such as foot
slide. Foot slide is when the foot moves globally when it should logically be
supporting the weight of the character— planted solidly upon the virtual floor.

Figure 3.6 shows the problems caused by switching the skeleton’s pro-

portions and then applying an unmodified motion to it. The picture on the

Figure 3.5: The initial DOF ordering

AN AL
[/ \\|

Figure 3.6: Different skeleton results in foot slide

48

49

left shows the walk as it was meant to appear. Notice the stability of the
foot placement during the support phases of the walk cycle. With a smaller
skeleton, the motion’s once solid support phases are replaced by skidding.
Gleicher [55] [56] has studied this problem extensively and has developed fast

methods for fixing such problems based on spacetime constraints.

3.4 Time

Time is a simple notion in the day-to-day sense. Animation systems, however,
often require a more sophisticated treatment of time, separating “time” into
different types. Verbs € Adverbs uses four different kinds of time.

The most general form of time, clock-time, is the common-sense notion of
time. For this dissertation, clock time can be considered to have begun a long
time ago, at —oo, and will continue indefinitely towards +oo. 0 can be placed
at any arbitrary moment. How about now? Clock-time will not often be used
in this dissertation, but when it is, the symbol 7" will be used.

Animation-time is the first major time used here and is the most closely
related to clock-time. In general, animation time ranges over a finite region of
the clock-time timeline and will be denoted by 7. An animation can be placed
in time to play at any region of the animation-time timeline. Two special
animation-times 7° and 7¢ mark the start and end times of the animation.
It is different from clock time in that clock time is assumed to have a global
calibration, i.e. everybody knows what time it is.

Verb-time, T, always starts at 0 and ends at 7%, the duration of the anima-
tion. Verb-time is used to normalize animations on the timeline; no shortening
or lengthening of the animation’s duration takes place. 79, therefore, is equal
to 7¢ — 7°.

So far; all the time types have been roughly equivalent up to an offset

50

T
A

Td b e eccecccccccccccem———-

T

Tt

L e e e e)t

K, K, Ka] K,
00 t,) 10

Figure 3.7: Connection between canonical-time, ¢, and verb-time, T’

in clock-time. Canonical-time, t, is different and has domain and range from
[0...1] always. Canonical time is extremely important to this dissertation
as it is used to time the structural elements of a motion. A walk motion, for
example, could be described by events like heel-strike, toe-off, swing-phase, etc.
An extensive overview of the structure of human walking is found in [125].
These structural milestones are defined by a set of user-specified key-times.
All motions have two implied key-times at 0 and T, thus tying the verb-time
and canonical-time timelines together. If the motion has no other key-times,

canonical time acts as percentage time, thus
T=t-T%

In the presence of three or more key-times, however, the mapping is more
complex. Figure 3.7 depicts the mapping for a motion with four key-times
(two implied and 2 user-specified). Given a verb-time 7', we can project that

into the canonical timeline using the equation

T-K 1
HT) = —1 m
(T) ((m)+ K1 — Km) NumKeyTimes — 1

for the largest m such that 7" > K, and keeping in mind that ¢(0) = 0. In

(3.1)

m—1

m. For 1nstance, at the

other words, at each key-time m, t(K,,) =

ol

third of four key-times, t(K3) = % as the key-times will fall at 0, %, §7 and 1.
Between key-times, ¢ is linearly interpolated.
Given a moment in canonical time, ¢, we can calculate the associated T

by linearly interpolating from the key-times between which a particular ¢ falls:

t—t(K,,)
Kipy1) = U(Kp)

T(t) = K, + (t ((Kot — Km)> (3.2)

where ¢ is in the range [t(K,,) ... t(K;4+1)) and keeping in mind that
T<1) = Tf = KNumKeyTimes~

The symbols “77, “T” and “t” are used interchangeably to indicate value
and projection from one kind of time to another. “7™, for example, stands for
a particular verb-time. T'(t) is the projection of the canonical time ¢ to the
verb-time timeline. While this may seem to clash, it helps to minimize the
number of symbols used in this dissertation, a goal which will become clearly

important as this chapter continues.

3.5 What makes a good example?

As will be shown in Chapter 4, interpolation is at the core of the Verbs &
Adverbs system. Interpolation imposes a number of constraints on the example

motions to be interpolated. These include:
1. similar motion structure,
2. same skeleton,
3. continuous DOF-curves,
4. anatomically-plausible use of joint angles,

5. similar use of joint angles for similar motions, and

52

Figure 3.8: Different walking styles

6. same initial placement and heading at the beginning of the example.
7. in canonical timeline

8. identical DOF function encoding schemes

Many of the functions for motion editing to be described in Section 3.9 can be

used to prepare an example from raw motion data.

Structural similarity

Of primary importance is the structural similarity requirement. Creating a
controlled walk, for example, requires a repertoire of walks exhibiting various
desired walking styles. These walks all need to start and end at the same
points in the walking-cycle. Likewise, the actor needs to swing his or her arms
in a consistent off-phase behavior, and not perform any spurious motions,
like a head-scratch, fidget, or angry fist raised against the world. Within
this restriction, a great variety of motions is found, as shown in Figure 3.8.

Figure 3.9 shows to structurally dissimilar walks.

53

Figure 3.9: Two walks not displaying structural similarity

As was discussed in Section 3.4, motions have a set of key-times, instants
when important milestones take place. All motions to be combined to form a
verb must have the same set of key-times in the same order. Given this key-
time information, all the examples can be put in the same canonical timeframe,
ensuring interpolation of corresponding instants in each of the motions. Anno-
tation of key-times and other structural constraints will be further described

in Sections 4.2 and 4.4.

Same skeleton

As was discussed in Section 3.3, applying a motion to a skeleton for which it
was not designed leads to unpredictable results. As all of the examples are
going to be applied to one skeleton in the interpolation step, the examples need

to be designed for the same skeleton. Using the techniques of the previously

54

mentioned section, however, can help a designer transform a set of motions for

differing skeletons into a set for one.

Continuous DOF-curves

DOF-curves are required to be continuous. Often basic motion capture is de-
livered as a collection of poses, each representing a discrete moment in time
when the motion was captured and analyzed. Since human figures are highly
redundant systems and given the incomplete knowledge of the human musculo-
skeletal system and its flexibility range [21], there is no guarantee that the joint
angles will be continuous from frame to frame even for slow deliberate motions
with little change from one frame to the next.

This is an issue since the Verbs € Adverbs system samples the DOF-curves
at times other than the frame times. This is not itself a fundamental problem—
we could use a piecewise-constant representation. Non-continuous curves, how-
ever, are often associated with non-similar curves for similar motion. This
restriction will be described shortly. For this reason, the desire to sample the
curves off the frame times, and the desire to use curve representations other
than piecewise-constant, DOF-curve continuity is required.

Section 3.7 describes how motion capture data analysis can be performed

in order to ensure continuous DOF curves.

Anatomical plausibility

A degree of freedom for our skeleton is an approximation of some motion which
a human can perform. Given that, the DOF must be set in a manner consistent
with a human’s abilities.

For example, take the wrist curling motion, shown in Figure 3.10. The

extent of the allowable curl is bounded by 6,,;, & 6,,... Anatomically plausible

95

max

Figure 3.10: Wrist curl extent

settings of this DOF fall between those two extents.

This model of plausibility is a simplification. The “real” values of 0,,;,
& 0,40 are not static, but are functions of other DOFs at the same body site,
such as the wrist bend about the Y axis, or of motions at other parts of the
body. This too is a simplification in that it does not handle self-intersection
with the body or the fact that the human body is only approximated by a
hierarchical collection of rigid limbs connected by rotary joints.

Why, therefore, is this simplified model being used? The biomechanics
community has yet to furnish a complete kinematic model of the human form.
When and if they do, it is not clear that it will be low dimensional enough to
be of practical use to animators or in motion capture analysis. The shoulder
complex, for example, was studied by Maurel, et. al., [97], and had 18 DOFs
per arm and shoulder, an impractically large number for many animation
purposes. Simplified models have been the most useful ones for the animation

community to date.

56

Figure 3.11: A medium reach

Similar use of joint angles

Redundant manipulators (redundant kinematic figures) can be posed in a glob-
ally unique configuration using a potentially infinite number of DOF settings.
Verbs € Adverbs requires that DOF values be similar for similar global config-
urations. Motion capture analysis can be done in a way which supports this.
The technique will be detailed later in Section 3.7.

Figure 3.13 shows two sets of shoulder curves for two different reaching
motions shown in Figures 3.11 and 3.12. The curves were generated using a
basic motion capture analysis technique. Note that both sets pass the (admit-
tedly liberal) plausibility test. As they are different motions, they should have
differing curves, but it is reasonable to assume that if the motions are simi-
lar overall, then their DOF-curves should be somewhat comparable. Blending
these two motions yields the strange result shown in Figure 3.15.

Using the motion capture method to be detailed in Section 3.7 yields

Figure 3.12: A low reach

Medium Reach Shoulder Curves Low Reach Shoulder Curves

Figure 3.13: Dissimilar use of joint angles

57

Medium Reach Shoulder Curves Low Reach Shoulder Curves

Figure 3.14: Similar use of joint angles

Figure 3.15: Poor motion blend due to dissimilar DOF curves

58

99

Figure 3.16: Good motion blend with similar DOF curves

consistent use of joint angles, as shown in Figure 3.14. These result in the
exact same reaching motions shown in Figures 3.11 and 3.12. When blended,

the result is much more reasonable, as shown in Figure 3.16.

Placement and heading at ¢t =0

The initial placement and heading requirement holds that all motions begin
at the same [X, Z] location in space oriented along the same heading. That is,
at t = 0, the first, third, and fourth DOFs of each example must match.

A useful side product of the initial DOF ordering introduced in Section 3.2
is the ability to reorient and reposition the character using a simple algorithm.
Thus, any motion can be put into the proper form to satisfy the placement
and heading requirement.

Assume that all the examples for a verb are to start at [x,2] = [0,0] and
heading along the positive Z axis, i.e. the global Y rotation is 0. Usually, the
clips start at an arbitrary location and head off in an arbitrary direction. This

is shown as motion M in Figure 3.17. To be useful as an example, M must be

60

Figure 3.17: Reorienting the character

transformed into M’. The method is shown by the following algorithm:

Algorithm 3.1 Steps to reorient

for each frame :

{
Y = Y - Y

3 K3

X! = cos(-YR)(X! — Xb) + sin(-Y5)(Z! — Zb)
Zi = —sin(-Yj)(X! — Xb) + cos(~Yp)(Z! — Z))

[199%)]

A “t” superscript indicates a translational DOF and an “r” a revolute
one. X!, Z!, and Y" are arrays of the first, second, and fourth DOF values for
each frame of M. Xt, Zt, and Y” are the adjusted DOF values corresponding
to motion M’. The algorithm adjusts each frame by translating so that the
initial frame is at [0, 0] and rotating by the negative of the initial heading, thus
ensuring that the initial heading is 0. A simple extension of this algorithm can

reposition a motion so that at time 7" = 0 it is in a certain position heading

61

in a certain direction. This is shown in the following algorithm:

Algorithm 3.2 General reorient and reposition

1 Given X}, Y§ ZE, Y},
¢yt o7ty
X07Y07ZO7Y0’

t t 7t r Kt Nt o7t T
X0 Y7, 25, Y, construct X, Yo, 20, Y7

N

5 AX' = X, — X}

6 AZ' = Zt — Zi
7
8 AY' = Y, — Y!
9 AY" = Y - Y]
10

11 XL = cos(—AY")AX' + sin(—~AY")AZ' + X
12 ZL = —sin(—~AY")AX' + cos(—AY")AZ' + Z}
13

14 Y, = YL + AY!

15 Y, = Y5, + AY’

The X4, Y%, Z!, and Y7 terms indicate the desired start time state of the
character. The X§, Y}, ZE, and Y| terms contain the actual start time state
of the character. The natural state for time 7' is contained in the X%, Y., Z.,
and Y’ terms. The Y translation is unaffected by the rotation about the
Y-axis. The Y" DOF will be rotated to maintain the illusion that the motion
started heading off in the direction Yg, when in reality it started off with the
heading Y. The X and Z translations are shifted and rotated to keep the

motion consistent with the desired initial configuration. This algorithm will

62

often be used in the remainder of this dissertation to line up motions one after
another.

A question to ask is whether an alternate handling of the root would
render the reprojection details moot. A velocity based approach would be to
store some or all of the initial DOFs as velocity curves, rather than positional
curves, and then integrate the values to yield the final result. One such initial
ordering is X!, Y*, Z!, Y, Z", X". A simple integration from one time to the
next would yield the appropriate changes in positioning the skeleton, handling
all of the work done by the reprojection. Unfortunately, this method has two
serious drawbacks which make it unappealing as a solution. First, integration
is expensive. Integration by Gaussian quadrature, for example, must sample
the curves at a number of distinct times in order to build up a reliable answer.
The longer the time, the more samples needed for reasonable confidence in the
solution.

The primary fault with this method is not efficiency, however, but accu-
racy. Unless the integration is performed from the beginning of time for each
frame, some information gathered in one frame will be used to calculate the
next frame and this leaves open the possibility of compounding error. For
example, buildup of error for the Z" rotation could cause the character to
spin off its feet and onto its head. Only favorable luck would keep this from
happening.

Keeping a subset of the initial DOFs as velocity curves and some as position
curves can make for a useful hybrid approach. Such an approach might have
an initial ordering of X!, Y*, Z*, Y, Z", X". Buildup of error can appear in
the X and Z translation, as well as the Y rotation component of the root’s
motion. The character is moving in the X-Z plane and rotating about the

Y axis as it turns, i.e. these values are typically unbounded. Such errors,

63

which are likely to be small from any given frame to the next, will likely go
unnoticed. This hybrid scheme would probably be a good initial configuration
and is worthy of use. It was not used as the scheme for the Verbs ¢ Adverbs
system as described in this dissertation, however, and will not be discussed

further.

3.6 Hand-designed examples

The Verbs € Adverbs system currently accepts both hand-animated and motion-
captured examples. In Chapter 2, keyframing, the process that animators use
to make 3D animations, was overviewed. Making examples using keyframing
systems like SoftImage™" and 3D-Studio/Maz'™" requires placing a few re-
strictions upon the animator in order to satisfy the example criteria introduced
earlier in this chapter. Currently, Verbs € Adverbs has been set up to work
with SoftImage™".

At the current time, Verbs & Adverbs requires one skeleton per verb,
i.e. one skeleton per set of examples. Some traditional animation metaphors,
like squash and stretch, therefore, cannot be used as they alter the size of
the skeleton. Ome goal of our current research is to remove this restriction
to enable the design of cartoonish verbs. The animator must also make sure
to maintain the structural similarity of the examples. A confused walking
motion, for instance, cannot convey its confusion with a head scratch, but
must rather convey emotion using timing and posture only. The rest of the
example restrictions can be satisfied automatically and are things with which

the animator need not be concerned.

64

Figure 3.18: Placement of sensors for motion capture analysis

3.7 Motion captured examples

A more complete description of our motion capture process was detailed at
Eurographics Workshop on Computer Animation and Simulation 1997 in The
Process of Motion Capture: Dealing with the Data [21].

Most of the data used in this dissertation was motion captured. Our
motion capture data was generated from an Ascension MotionStar™" system

input directly into a 3D modeling and animation program, SoftImage'™

, ab
capture time. Data is was sampled at 144Hz. This high sampling rate is
advisable when fast motions, such as sports motions, are captured; using slower
sampling rates for such motions can often produce problems in the inverse
kinematics phase, since there is less frame-to-frame coherence. Actors are
suited using from 13 to 18 six-DOF sensors, the typical locations of which are
shown in Figure 3.18. Statistical analysis is used to ignore gross errors and

outlying data in the skeleton generation and inverse-kinematic phases of the

analysis process.

65

Given a motion capture dataset, the goal is to construct an articulated,
hierarchical rigid body model. The George skeleton (Figure 3.1) is the topology
used, though it must sized to fit different motion capture actors. The first task
is to extract the best limb lengths from the motion capture data. Once the scale
of the segments is determined, an inverse-kinematics solution is calculated to
determine the joint angles for the figure. Our inverse-kinematics routine uses
penalty functions to constrain the joint angles to approximate a human’s range
of motion.

Motion capture data is noisy and often contains gross errors. The source
of the noise is primarily the magnetic sensors themselves, although we note
that in our experience optical data is as noisy. The size of the skeleton is deter-
mined by finding the distances of the translated joint locations over a motion
or repertoire of motions. Using the simple arithmetic mean to compute these
distances results in answers distorted by a few gross errors. Unfortunately,
editing the data by hand to remove outliers is impractical. As an example,
gross errors in fast motions such as throwing may, for a frame or two, give a
distance between the elbow and wrist of over three meters. A robust statistical
procedure, such as described in [64], can be used to remove the outliers result-
ing in accurate measurements of the skeleton. Outliers can also be tagged and

then ignored in the inverse-kinematic stage of the analysis.

Fitting the cleaned data to the skeleton

Once the hierarchical model has been determined using robust statistical anal-
ysis, each frame of data must be analyzed to produce a set of joint angles. To
obey the example criteria, the resulting DOF curves must make consistent use
of DOFs across multiple motions and must be continuous. A piecewise-linear or

B-spline representation of the DOF is used. Care is taken to insure that these

66

curves contain no extreme accelerations between frames. In contrast, many
commercial data sets often contain discontinuities in the rotational data from
frame to frame which makes off-frame sampling impossible without represent-
ing the joints as quaternions and using quaternion interpolation, as described
in Shoemake [129].
The data sets yield information about many areas of the body, giving us
a highly constrained kinematic problem. As mentioned in Section 2.3, such
problems can be solved using a non-linear optimization technique which seeks
to minimize the deviation between the recorded data and the hierarchical
model. A modification to the technique presented in Zhao and Badler [150] is
used.
Recall that Zhao’s fitness function to minimize is defined as
F(©) =) wy, (Pi(0) = P))*+
jeJ
w0,,;(00,3(8) = Ooy)*+ (3.3)
wo, ,(©) — O1;)*+

wCC']2

where © is the set of joint angles for the set of joints J, P;(©) the global
location of the jth joint given © and Pj the recorded joint position from the
capture phase. O ;(©) and O;;(O) are two vectors defining the global ori-
entation of the joint with OAO,]- and OAL]- being the recorded orientations. Two
vectors are used, as, together with their cross product, they will form a coor-
dinate system. The quantities wy;, wo,;, and wo, ; are scalar weights which
can be tuned on a DOF by DOF basis to achieve better results. Additionally,
we employ a joint angle constraint term, Cj, in the form of a penalty function.
Joint angle constraints for humans have been measured and can be found in

the biomechanical literature, such as in Houy [77]. C; is calculated as the

67

distance of ©; from the range [©

B CT

jmin :
The quasi-Newton BFGS optimization technique [53] is used to solve the

system and uses the gradient of the fitness function, given by
OF;

70, =2wy, (P;(©) — P))(u; x dji)+

2wo, (0o — o) (uj x O)+

2wo, (01, — Ol,j)(uj x O1,5)+

2w.C}
where u; is the effective axis of rotation about the jth DOF in global terms
and d;; the vector from the jth DOF to the ith DOF. If the data is relatively
non-noisy and the skeleton is well formed, this technique will work well. It
can produce poor results if these conditions are not present. Robust statistics
helps to insure these conditions by making the best skeleton and by marking
data points which are considered outliers. Since a hierarchical description
of a skeleton is a biological simplification and since non-linear optimization
does not guarantee finding a global minimum, this analysis can still fall into
an insufficient local minimum if the starting guess for the optimization is far
from the desired solution.

If we assume a good starting guess for the first frame, then a good 1K
solution for that frame will very likely be found by Zhao and Badler’s min-
imization. As the sampling rate on the motion capture system is high, the
pose from one frame to the next will not change much. The solution for one
frame, therefore, provides an excellent starting guess for the next frame. For
many motions, this technique works admirably. It suffers if the data and the
skeleton are mismatched near where the skeleton goes through a singularity or
where the data points are too far apart in time for a given motion’s velocity.
Additionally, it will suffer if it never converges to a good solution for an initial

frame. Over the shoulder reaching, fast motions, and motions where the arm

68

Figure 3.19: Fitting motion capture data to the skeleton

is extended to its limit are examples. If this happens, the solution can jump
over to another local minimum and stay there. This behavior is not desirable,
as it will likely break the DOF consistency requirement of examples.
Analyzing a walk motion of 6.7 seconds duration at 30 frames per second
required 306 seconds on a Pentium 133 machine with 4389 BFGS iterations for
satisfactory convergence of the solution. A selected frame showing the fit of
the skeleton (yellow) to the data (black) is shown in Figure 3.19. Notice that
the fit is extremely good and shows only a slight discrepancy in the left arm.

The resulting walk motion is shown in Figure 3.20.

Bootstrapping

A further refinement of the motion capture analysis presented here is to use
motions to bootstrap one another by providing good starting guesses to the
BFGS optimization. The assumption for this technique is that many motions of
similar structure are to be analyzed, i.e. a set of examples, and that motions
of similar structure will have relatively similar DOF curves. Such data sets

might include reaches, runs, walks, etc.

69

Figure 3.20: Walk motion from motion capture data

Assume that there is a motion M, a set of DOF curves, for a motion in a
set of examples. If we have a motion capture dataset for a structurally similar
motion (Section 3.5), the joint angles will be similar to those for motion M.
The main difference between the solution for the new desired motion M and
M will be a time warping to account for differences in the phrasing (relative
timing) between M and the captured data. Thus a scaling in time on the data
sets is needed. We mark a set of correspondence times, key-times (Section 3.4),
in M, and in the data set. We time-warp M and then use that as the starting
guess for the inverse kinematics optimization described earlier. Section 3.9
describes piecewise-linear time-warping and Chapter 4 describes the use of
key-times in depth.

Thus, this technique will not propagate errors, whereas in the previous
technique a bad starting guess may result in a bad solution, which can prop-
agate from frame to frame. Near singular conditions can also cause the pre-

vious technique to jump from one local minimum to another, which is then

70

propagated to all the remaining frames. With this technique, similar mo-
tions will make similar use of their joint angles when analyzed, which is
key for using motion capture for a set of examples or for a technique like
Witkin and Popovi¢ [148]. Note that this technique requires operator inter-
vention to mark the key times, and thus it is only employed for groups of
data-sets when the previous technique did not work.

The details of the Verbs & Adverbs interpolation will not be described
until the next chapter, but in short, DOF values are generated through in-
terpolating (blending) between multiple example motions. Section 3.5 stated
that examples must make similar use of DOFs for similar motions. Why is
this?

DOFs for the two reaching motions from the naive motion capture analysis
were shown in Figure 3.13. Note that the curves are quite different even though
they achieve a similar global effect. Figure 3.15 showed an unsuccessful blend
between the two motions. The motions did not analyze reasonably due to
noise in the sensors and inadequacies of the skeletal model and the joint angle
constraints model. Using the medium reach motion as a reference motion and
a time-warp to align it as the starting guess, we can obtain a more consistent
use of shoulder angles, as shown in Figure 3.14. Notice that, up to a time
warp, these sets of shoulder angles are very similar. Figure 3.16 showed a

simple blend which yielded reasonable results.

3.8 The motion formalism

Early in this chapter, the motion was introduced. Motions, denoted by the
symbol “M”, were defined to be short, finite-duration animations. Later sec-
tions introduced the three varieties of time (Section 3.4) and detailed a special

class of motions called examples— motions which obey a set of restrictions

71

(Section 3.5). M, refered to the ith example in a set. In more abstract terms,
however, M, is just a particular motion. M, therefore, would refer to a
different motion.

What do these two motions have in common? They may be encoded using
different DOF curve representations, for example. Each would have a set of
DOF curves. As will be seen later in this section, they may be even less closely
related than that. What all motions share is the ability to answer a common
set of questions or, in other words, all motions share a common interface. This
interface is called the motion formalism. The remainder of this chapter will
detail this formalism and describe a set of concrete objects that implement
it. This formalism will tie together the notions of DOF-functions, time, and a
number of other ancillary values like key-times.

Motions were defined to contain a number of data items, such as key-times
and inverse-kinematic constraints. More formally, a motion is an entity which
can respond to a number of questions and which can produce a number of val-
ues. Table 3.1 details the simple values a motion needs to be able to produce.
To take an example, T¢ is the duration of the ith motion in terms of verb-time.
Subscripts ¢ will indicate motion and j DOF. Superscripts will differentiate be-
tween different values of the same type, such as 77 for animation-time start
and 77 for animation-time end.

As was introduced in Section 3.4, the three types of time which must
be considered are animation-time, verb-time, and canonical time. Motions,
therefore, must be able to project time from one type to another. As stated
previously, the symbols “77, “T” and “t” are used both in functional and
non-functional forms. 7(7"), for instance, will project the verb-time 7" into the
animation-timeline while 7 alone simply indicates a particular animation-time.

7;(T') indicates the projection of the verb-time 7" into the animation-timeline

72

data-item | values description
Kim [0...+ 0c0) mth key-time for motion M;
e (—00...4 00) | start-time of motion M;
¢ (—00...4 00) | end-time of motion M;
T¢ [0...+00) duration of motion M;
P: R NumAdverbs adverb values for motion M,

Table 3.1: Basic motion values: key-times, time-bounds, duration, and adverbs

for motion M.

0 is the DOF position function for a motion, which takes verb-time as
a parameter. 0;;(T), therefore, would return the value for the jth DOF for
the ith motion at verb-time T'. Likewise, the DOF velocity and acceleration
functions are indicated by 92] and 9” Script-1, Z, is used to indicate the
active constraints placed upon a motion at particular time. Script-D, D, is
used to indicate the DOF-usage for the DOFs at a particular time, as will
be described in Section 3.9 under the sub-heading “composition”. Table 3.2
indicates the different functions supported by the motion formalism, their
parameters, results, and meanings.

Unless otherwise indicated, the duration of a motion M; is calculated
simply as

T =18 — 77.

Likewise, the functions T;(t) and ¢;(T") are functions of key-times and can be
calculated by using Equations 3.1 and 3.2 unless otherwise indicated.

The motion-formalism is an abstraction and such abstractions beckon to
computer scientists to define many concrete implementations, this being the
core idea of object oriented programming. This idea was used effectively in

the Verbs & Adverbs system. In Section 3.9, some other kinds of objects

function result range description
7(T) T (—00...4+00) | verb-time to animation-time
Ti(t) T [0...400) | canonical-time to verb-time
t:(T) t 0...1] verb-time to canonical-time
0,;(T) position R return DOF position
0:;(T) velocity R return DOF velocitie
0,;(T) | acceleration R return DOF acceleration
D;;(T') | por-usage | {required, | return DOF-usage
defined on a DOF-by-DOF basis
undefined}
Z,(T) | constraints IK constraints active at T’
Table 3.2: Motion functions: time projections and kinematic operators

73

supporting the formalism will be introduced. In Chapter 4, verb construction

will be detailed. Verbs, not surprisingly, will been shown to be simply another

object supporting the motion formalism.

Since some key concepts are introduced at different times, the motion

formalism grows as this dissertation progresses. The full motion-formalism

and all of its different concrete implementations is detailed in Appendix A for

easy reference.

Basic motions

So far, the only kind of motions which have been introduced are the simplest

ones, those defined by a set of DOF-curves. These motions will be called basic-

motions. A basic motion M, is defined as

Definition 1 basic motion M; = {KZ-,L, pi, T, C’i}

74

where the key-times K, constraints Z;, adverbs by p;, duration T¢, and DOF-
curves (; are DOF-curves represented using methods such as described in Sec-
tion 2.2. We use C; to indicate the distinction between the 6,;(T") operator,
which must be able to respond to queries about any DOF j, many of which
may not be defined for a particular basic-motion.

Basic motions implement the formalism as follows:

S _
7, = 0

e d
T - Tz

Ci;(T) D;;(T) = required
0 otherwise
D,;;(T) = required
0 otherwise

Ci;(T) Dy(T) = required

S
=
I
—_—— —— —— N
¥
E

0 otherwise

required V DOFs j in C;

undefined otherwise
To ensure that basic motions may be considered as examples, they are defined
to begin at 7" = 0. Using the reprojection algorithm (Algorithm 3.2), proper

placement and heading at T'= 0 can be ensured.

3.9 Functional composition of motions

Now that the motion formalism has been defined and the basic motion type
detailed, other kinds of motions can be described which combine to form an
editing tool. These “other” motions embody key editing concepts like clipping,

mirroring, time-warping, and the like. If the basic motion is thought of as a

75

Motion

I 1
Functional-forms Basic-motions

Clip Piecewise-linear
Composition B-spline
Concatenation Hierarchical B-spline
Time-warp Hierarchical wavelet
Mirror Fourier decomposition
Affine

Selection

Cyclification

Figure 3.21: A hierarchy of motion types

particular kind of motion in the object-oriented sense, the different motion
types form an object hierarchy, as shown in Figure 3.21. So far, the reader
has been introduced to the sub-tree shown in red, rooted at basic-motions.
This motion hierarchy and the functional relationships it encapsulates
form a language for expression of motion. Rather than being separate entities,
motions are organized as an acyclic graph of relationships, the parameters of
which can be altered at any time, thus allowing freedom to edit, try new ideas,
and undo mistakes. As each type of motion object must be able to support
the motion formalism introduced in Section 3.8, posing a question to one node
in the graph is answered by posing a cascade of questions further down in the
graph. These answers are combined or arbitrated between to produce a final
result. The operative variable, which is manipulated from one level of the

graph to the next, is verb-time, T'.

Motion clipping

The simplest kind of edit a designer may wish to perform is to clip out a piece
of a motion. This could be done by extracting the relevant coefficients from
the original motion, but this approach has two drawbacks. First, the decision
is final. Short of redoing the operation against the original motion, there is no

way to change the clip points, unless it is to make the clip even shorter. Sec-

76

ondarily, multiple clips of one motion which overlap will unnecessarily contain
duplicate information.

By maintaining a relationship between the clip and the motion being
clipped, both pitfalls are avoided. The term “clip” refers here to this relation-
ship, not the operation of clipping out coefficients. The clip-relationship is
embodied in a clip-type motion, the second kind of motion from the hierarchy.

A clip, M;, of another motion M;/, therefore, is defined as
Definition 2 clip motion M; = {t5,t5, My }

where ¢, and t§, mark the start and stop region of the clip in motion M, .
These values are expressed in the canonical timeline of motion M.
The duration of the clip is derived by projecting the clip times from the

canonical timeline of the motion being clipped into its verb timeline, so
T{ = To(t;) — T (t;).

We define the clip to begin at 7 = 0, so

where T¢ is calculated as shown.
The DOF position, velocity, and acceleration functions are calculated by
offsetting T' by the projected clip start:

0:(T) = O0u(T + Tu(t;))

0,(T) = 0u(T+Tu(t3))

0:(T) = 6,(T +Ty(t3)).
Likewise, the DOF usage function, D;;, is implemented as

Dy;(T) = Dyj (T + Ty (£3)).

7

The DOF position function is actually more complicated than 6,(T) =
0;(T + Ty (t3)). In order for a clipped motion to be an example (Section 3.5),
it must start at the origin pointed along the Z-axis. This can easily be ensured
using Algorithm 3.2 for general repositioning and orienting of the root. For
simplicity’s sake, however, this and other motion types will be specified as if
this step were avoided. Note, however, that at T' = 0, all motions to be used
as examples must be in the standard position and orientation. Potentially, we
would like all kinds of motions to be able to serve as examples.

A clip of a motion may not encompass all of the key-times of the original
motion, but even if the clip does, all the key-times must change to account
for the change in duration. Let us assume that all the internal key-times of
motion M; are also in the clip M;. A simple example of this is shown in

Figure 3.22. The key-times in the figure would be determined as follows:

Ky = 0 all motions start at T'=0
Ki,n = Kim—Ty(t;) forinternal keytimes (here 2...4)
Kis = T¢ the duration of the clip

The equation also works for the case where the clip does not encompass
all the key-times in the original motion, save that the m subscript must be

adjusted to account for the missing key-times, so for the internal key-times,
Kim = Ky — T (t?')

where m’ is the adjusted subscript. Once the key-times are determined, the
time mapping functions, 7;(t) and ¢;(T), work as developed in Section 3.4.
The kinematic constraint function, Z;(7"), is designed to exclude all those
constraints which fall outside the clip region.
An example clip motion is shown in Figure 3.23. It shows a walk that

has been clipped from ¢, = 0.44s to t. = 1.33s. The original motion ran from

78

KI 1 K|2 Ki3 K|4 K|5
1 1 | -
1 T i
] .
, — Ti
Kip K Kisz Kig Kis
T, (t7) T, (t9)

Figure 3.22: Shifting the key-times for a clip motion

Figure 3.23: A clipped walk motion

79

7 = 0s to 1.76s. The clipped region is shown in red and the unclipped excess
shown in blue. Note that the clipped region begins at the standard position

and orientation as required by Section 3.5

Affine

Shifting and scaling time is an important operation and is done using an affine
relationship. This operation enables the designer to put multiple motions in
the correct temporal relationship to one another for later compositing, as will
be described later in this section. Using an affine, a designer can also perform
an overall speed up or slow down to achieve a desired effect. The affine motion

is defined as
Definition 3 affine motion M; = {77,5, My}, s >0

where 77 is the moment in animation-time when the motion is set to begin
and s a scaling factor which changes the overall duration of the motion.

The motion formalism is implemented using the following formulae:

T; given

d _ d
T’L — S - T’L/

e s d
o = 1, + 715

n(T) = 77+s-T
Ti(t) = s-Tu(t)

pPi = Pv

30

=
3

[
a

w | 3
~——

A

G

I

A~
=

=

=
[

N

>

=

Il

>
N elH e8|
~— N~~~

o
—
~
N—
\
>

>

—

3
I

As the affine changes only time, the position and heading at T" = 0 are un-
changed.

Figure 3.24 shows 3 motions, a walk at normal speed in the middle, a slow
down at top, and a speed up at bottom. Each was multiply-exposed at 0.05

second intervals for a duration of 1 second. None was shifted in time.

Time-warping

In addition to shifting and scaling a motion in time, an animator may want
to alter the relative durations of some pieces of a motion. This is the primary
operation which projects a motion in and out of the canonical timeline, for
example. This type of motion is known as the time-warp.

Time-warping relies upon a function, U/, to warp time by slowing or speed-
ing it as a motion progresses. The general form of the time-warp motion is

defined as
Definition 4 time-warp motion M; = {U, M, }

where U is a monotonically increasing function with domain and range [0..1].

The U function warps the relative duration of the segments of the motion.

Figure 3.24: A walk and 2 affines

81

82

The motion formalism is implemented as follows:

T, = T,
T = T
T¢ = TY
pPi = Pv

T;(t) = refer to Equation 3.2

= rou(E)
K, = Tgl.u(Ki’m)
- w(ra()
i - o, ()

91' and 6’1 are similar to 0;, Z;, and D;. Like the affine, the time-warp does not
alter the position or heading at 7' = 0, so motion M; will be in the standard
position and orientation if My is.

Figure 3.25 shows 3 motions. The top is a non-time-warped walk. The
middle is one which has been eased-in using the function U(t) = t*. The

bottom has had its middle sped up using the function
1 1, 1
Ult) = 3 —|—§sm <7T (t— 5)) :
Mirroring

Another often needed operation is the mirror, which switches the left /right di-

rection of a motion. Animation snippets are expensive to create, so being able

Figure 3.25: Time-warping

83

84

to take a walk to the left and turn it into a walk to the right is advantageous.

It is also a relatively simple task. The mirror of a motion is defined as
Definition 5 mirror motion M; = {A, S, M; }

where motion M, is the motion to be mirrored and A and S are sets of DOF
pairs {j, 7'} which are anti-symmetrical and symmetrical as defined below. As
the mirroring does not alter the duration or timing of the example, most of

the motion formalism can be implemented simply:

T, = T;

T = T,
d d

T - T ’

pP: = D#

Kin = Kin.

The K, function may change the meaning of the key-times. A left-foot-down
key-time in M;, will need to be interpreted as a right-foot-down key-time in
M;.

The other functions require more work. Figure 3.26 shows the skeleton
projected onto the X-Y plane raising its arm by rotating about the Z-axis at
the shoulder by an angle of ©; (assume the shoulder is the jth DOF). If that
value were simply applied to the corresponding point on the other side of the
body, the arm would rotate up into the torso. The negative of this angle, —©
is used instead. Similarly, a Y rotation would have the same anti-symmetry.

These corresponding pairs in the DOF values need to be exchanged and have

85

Figure 3.26: Mirroring anti-symmetries

their signs flipped. Other DOFs need to be copied directly from one side of the
body to the other, i.e. the symmetry pairs.

For the George skeleton (Figure 3.1), the anti-symmetry pairs are used
to exchange the Y and Z rotations for the left and right sides of the body
in addition to changing their sign. The change of sign for the root and spine
Y and Z rotations, in addition to the root X translation are also encoded
using the anti-symmetry pairs. The symmetry pairs are used to apply the X
rotations for the left side of the body to the right side.

The position, 6;, function is defined as

0,5 (T) V symmetry pairs {j,j'} € M;
0ij(T) = —0u;(T) V anti-symmetry pairs {j, 7'} € M;
0, (T) otherwise.

The DOF velocity and acceleration functions, 9” and (%, are similar. The

DOF-usage function D;, must return DOF-usages for the opposite side of the

body, so would be defined:

- Dy (T) V symmetry and anti-symmetry pairs {7, j'} € M;
ij =
D ;(T) otherwise.
Since the spine is its own symmetry and anti-symmetry target, this will return

the correct answer even though some of the DOF-usages will not actually shift

86

Figure 3.27: A mirrored jump-dive

from one side of the body to another.

The constraint function, Z; (T'), requires that the constraints involving
the DOFs for one side of the body be translated to use their appropriate coun-
terparts on the other side of the body, if appropriate. Constraints involving
the right foot, for example, in motion M;/, should report as involving the left
foot for motion M.

Figure 3.27 shows a jump-dive motion in red and its mirror in green.

Composition

Motion compositing is the process of taking multiple motions and executing
them simultaneously, producing a layered motion. For example, an animator
may want to take a wave and compose it with a walk to construct a walking

wave, as shown in Figure 3.28. A composition is defined as:
Definition 6 composition motion M; = {p;, M;,, M, ... M; }

where the M, ’s are the motions to be composed with one another. The adverb
value p; is designer specified since there is no reasonable procedural way to
assign an overall adverb value to a motion composed of many different motions

with many different, and potentially conflicting, adverbs settings. The motions

87

Figure 3.28: A walk/wave composition

may be placed anywhere on the animation timeline (possibly through use of

an affine), so the animation time bounds can be calculated as:

The composition has the union of all the keys for its components. For

each key-time K _,,» in a constituent motion,

Kim = Tic(Kicm’) — 7'-8.

K3

Likewise, the constraint function Z; would return the union of all the con-

straints present in the constituent motions:

38

The other functions of the motion formalism are not as simple. When
two motions overlap in time, how are their effects or kinematic constraints
combined to produce a reasonable effect? For this, a mechanism for arbitrating

the composibility of two (or more) motions must be designed.

Degrees of freedom & motion composibility

Many such arbitration schemes are possible and no one method is currently the
preferred one. The Verbs €5 Adverbs system makes use of a 3-valued DOF-usage
value on a DOF-by-DOF basis to determine composibility. The three types of
DOFs used are those which are required, defined, and undefined.

A required DOF is one which is integral to the effectiveness of a motion.
An example would be the knee rotation of a walk cycle. A defined DOF is
one for which information has been provided but which is not integral to the
successful completion of the motion’s primary goal. An example would be the
wrist rotation of the walk. Finally, an undefined DOF is one for which no
information is provided. A waving motion, for example, would not need to
define the knee rotation.

Figure 3.29 shows the different DOF usages for a walking motion and
waving motion. Yellow DOFs are required, red DOFs are defined, and gray
ones are undefined.

For sufficiently complicated motions, these distinctions may not be fine
enough. Take, for example, the walk/wave composition motion shown in Fig-
ure 3.28. If it were to be used basic motion in a further motion edit, what
would its DOF-usages be? One answer would be that the arm and legs are
required and the other DOFs defined, as shown in Figure 3.30.

Rather than define a static value for the DOF-usages of a motion, motions

should provide a mechanism for returning the DOF-usage of any DOF at a given

Figure 3.29: DOF-classes for walk/wave motions

Figure 3.30: DOF-usage values too broad

89

90

time. Hence the DOF-usage function D;; (7).

Motion compositing determines DOF-usages procedurally, by querying the
motions which are being composited. The motion with the highest class at
a given time is granted control of the DOF and the DOF-usage is set at that
level. Motions with conflicting DOFs can be either tagged as ill-constructed,
further arbitrated, or both. In this work, conflicting DOFs are arbitrated in a
first-come-first-served basis depending upon the order in which the constituent
motions of a composition were added into the composition. Additionally, flags

indicating a potential problem are set which can be queried. So,
Dy;(T) = max D;;(T)

where undefined < defined < required.

Finally, the position function, 6;;, is
0:;(T) = Arbitrate (0,;(T5), 05,5(T5,), - - - 05,5(T5,))

where T;, = T;_ (7(T)).

A time-lapse picture showing the DOF-usages on the figure through time
is depicted in Figure 3.9. Note that the arm is defined at the beginning,
becomes required as the motion moves into the wave period, and returns to

defined at the end. No DOFs where undefined in this composition.

Concatenation

Concatenating a number of motions means to place them end-to-end on a new
timeline. This differs from a composition and affine-time-shift in that special
care must be taken when dealing with the root DOFs, so that it appears that
the motions follow one another reasonably in space.

A concatenation motion is defined as

91

Figure 3.31: Walk/wave DOF-usage time lapse

Definition 7 concatenation motion M; = {p;, M;,, M .M, }

109 219+ *

where the M, ’s are the motions being concatenated in order from 0..n. Like
the composition motion, the overall adverb value is specified by the designer
as p;- The concatenation as a whole is defined to start at 7 = 0, so 77 = 0.
The total duration of the concatenation is the sum of the durations of the

M,’s, so the basic time mapping functions are defined as follows:

=0

T = > T
c=0

T = Tf‘l

Only one motion is active at a given time 7, so the elapsed time spend in

92

any motion at 7 is defined as
n—1
2 : d
Telapsed =T - T;;C
c=0

where n is the maximum n which satisfies

n—1
D TIST.
c=0

If no n satisfies, then the first motion has not yet been exhausted, so Ttjapsed =
T.
Key-times can now be defined. For any key-time K; , in a constituent

motion,
Kim =
Kigm otherwise
where m and m’ indicate the key-time offset due to the concatenation having
key-times from all the constituent motions. Once the key-times are deter-
mined, the time functions 7;(¢) and ¢;(7T") can be calculated using the standard

formulae from Section 3.4.

The kinematic functions are calculated using

91(T> = QZC(T - Telapsed)

92(T> = eic (T - Telapsed)

91 (T) = eic (T - Telapsed)

The position function is not as simple as shown here. In order for examples

to be concatenated in space, the start of a motion M must be lined up

7:c+1
with the end of a motion M;,. A general reorientation (Algorithm 3.2) can be
used to line them up, making the actual #; not much more complicated than
as above.

This concatenation mechanism does not smooth between motions other

than to line them up at the root. Discontinuous change in the body rotations

93

Figure 3.32: A concatenation

will make for strange concatenations. Transitioning mechanisms, described
in Section 5.5 and Appendix B, can smooth out these discontinuities. An
example concatenation is shown in Figure 3.32, discontinuities and all. Color
indicates the different motions in the concatenation. Note the discontinuities

between the motions.

Selection

Another motion type, this one a helper in the construction of more complicated
motions, is the selection. This kind of motion is particularly simple, as it turns
on and off DOFs, i.e. it changes some DOF-usages for some of the DOFs. While
simple, it is useful for complex editing sessions. Imagine a waving verb, such

as seen earlier in this chapter. When the wave came out of the motion capture

94

analysis system, its DOFs are of equal weight. The designer can go in and
annotate the DOFs and assign some of them to required and some to defined.
It is possible, however, that this motion may be used in two places, one where
the arm is required, and one where the arm is simply defined. The designer
may want the motion to have the DOF values defined for the non-arm parts
of the body in one circumstance and undefined elsewhere. This is where the
selection motion comes in handy.

The selection of a motion Mj;, is defined as
Definition 8 selection motion M; = {My, {j, usage}” }

where M is the motion having its DOF-usages adjusted and wusage either
undefined, defined, or required. The motion formalism is easily imple-

mented for this motion as

T, = Ty

T = T

T = T§
(T) = 7(T)

pPi = DP#
Kim = Ki’m

0, (T) V DOFs not undefined

0 otherwise

95

undefined V DOFs j undefined by the selection

defined V DOFs j defined by the selection
Dy(T) =

required V DOFs j required by the selection

0 otherwise

\

Z,(T) = Zy(T)— those involving undefined DOFs

The DOF velocity and acceleration functions, QZ and 01, are similar to ;.

3.10 Cyclification

As reported in Efficient Generation of Motion Transitions using Spacetime
Constraints [124], hand animation or motion capture often yields motions
which are almost cyclic, but which should logically be perfectly cyclic. Varia-
tions in human motion and motion capture data noise yield non-cyclic results.
Animators who do not take pains to produce exactly cyclic motion are also
likely to produce almost cyclic motions.

Some simple processing can help to ensure the cyclicity of a motion. For
example, take the walking motion introduced earlier in this chapter. The de-
signer marks out two times where they believe a cycle is located. A region
around this proposed cycle is searched to try to find the most closely matched
times 7y and 7;. Once they are found, spreading the remaining error through-
out the cycle yields a smooth cyclic motion. Typically, this construction is
then fit through a cyclic B-spline type motion, which yields C' — 2 continuity
at the end-points. Not all of the DOFs are cyclified, however. As is typical, the
root requires some special handling. The X-translation, Z-translation, and
Y-rotation DOFs are not cyclified. The concatenation mechanism keeps these
motions flowing from one to another in these DOFs. Cyclification can also

often be done using the transitioning mechanism detailed in Section 5.5.

96

Figure 3.33: Cylification smooths out the cycle for seamless concatenation

Figure 3.33 shows the effectiveness of this cyclification technique. The
picture on the left shows the cycle-clip (as defined above) simply concate-
nated with itself. Note the discontinuity at the color change. The picture on
the right, however, was cyclified and exhibits a smooth transition from one
repetition of the cycle to the next.

Rather than alter the DOF-curve coefficients to achieve a perfect cycle,
however, a functional cycle form obeying the motion formalism can be con-
structed. Assume that we have constructed a clip motion M; which marks the
beginning and ending of a cycle in amother motion M;» as determined above.

A cycle motion M; of My, therefore, is defined as
Definition 9 cycle motion M; = {c;, My}

where c; is a vector of booleans indicating which DOFs are cyclified. Remember
that the root Z translation is typically not-cyclified. Using the boolean vector

generalizes that notion. Implementing the motion formalism is as follows:

97

P: = P#
Dy(T) = Dy(T)
Z(T) = Zu(T)
0,;(T) c;; false
0,;(T) = 0y;(T) + deg{'j — d% c;; true

where dij = H’L/j(T;i/) - 91'/]' (0)

The DOF velocity and acceleration functions, Ql and 01, are similar to ;.

3.11 Conclusions

In this chapter, the idea of an example was presented. Examples are motions
which meet a number of criteria, none of them overly strict. A motion formal-
ism was introduced which structures the way in which information is extracted
from a motion to facilitate playback. Tools for manipulating example motions
were described which implement the motion formalism. Rather than treating
a clip differently than a composition, the motions can be handled using the
same methods. The motion objects can be used to construct an animation
editing system which allows for undo at any stage of the editing process with-
out seriously adding to the memory size requirements of the system, as the

motion data is never copied.

98

Chapter 4

Verbs & adverbs

Our hero walks into a moonlit room turning sharply to the left
and then right, scanning purposefully. Dejected, he realizes that
he is alone. He walks further into the room in that slow, lackluster
way of the disappointed. Off in the distance, he hears a familiar
welcoming voice and walks to its source full of life, brimming with

pleasure in each carefree step. His intended had not left, after all.

Earlier in this dissertation, both hand animation and motion capture were
detailed. Using these tools, a competent animator could design a sequence for
the above scene. What if, however, the unseen voice was of a hated foe, or
an unknown person. The walk, on the one hand carefree, would need to be
modified to fit the new scene. For a movie, modifying the motion using the
same tools used for the original motion would be a fine solution. If this were an
interactive game or a shared virtual environment, however, the circumstances
might not be known until runtime. In order to fit the scene, either a large
collection of appropriate motions must be gathered or the motions themselves
must be parameterized, able to handle many different situations.

This chapter describes a method for using multidimensional function in-

terpolation to derive controllable motions, verbs, from sets of examples. Ac-

99

quiring these examples and putting them into the proper form was described

in Chapter 3.

4.1 Overview

There are many ways to parameterize motions. Chapter 2, the overview and
literature review chapter provides a synopsis of the primary techniques, break-
ing them into three primary groupings: procedural, simulated, and interpo-
lated. The Verbs & Adverbs technique is an interpolated method used to
construct motions, or werbs, which respond to a set of control knobs, known
as adverbs. The goal of this technique is to create these verbs using as in-
put primarily that which an animator or motion capture system will typically
produce. Thus, this system is designed to leverage talents or properties of
each.

Please recall that examples were defined to have a number of desirable

properties, as was detailed in Section 3.5. These were:

1. similar motion structure,

2. same skeleton,

3. continuous DOF-curves,

4. anatomically-plausible use of joint angles,

5. similar use of joint angles for similar motions, and

6. same initial placement and heading at the beginning of the example.
7. in canonical timeline

8. identical DOF function encoding schemes.

100

The last restriction requires that all the examples be encoded using the same
mechanism, for example, a B-Spline, and that they each have the same number
of coefficients. This does not mean that each of the DOFs for a particular
example ¢ have the same encoding, but rather that the jth DOF for each
example be encoded in the same way. The next-to-last restriction ensures
that a given coefficient in a particular example encodes the same structural
portion of a motion as that coefficient for a different example.

If the coefficients are so constrained, then it is possible to interpolate the
motion by constructing independent problems over the coefficients. Each of
these separate problems can be solved using a non-linear multi-dimensional
interpolation technique. As will be described later, due to the sparsity of data
for the interpolated animation problem, we solve for these interpolations using
radial basis functions. In the example acquisition phase, the designer assigned
key-times, which were used to reproject the motions into a canonical time-
line. The canonical timeline ensures that the coefficients can be interpolated
meaningfully, but removes timing information from the example set. An in-
terpolation scheme for timing must also be used in order to recapture that
information. The timing information is merely the key-times, which can be
thought of as further coefficients to be interpolated.

There are many ways to perform multi-dimensional interpolation. Wave-
lets, for example, have proven a useful encoding for many computer graphics
problems such as radiosity, surface approximation, and video-lookup. One
problem, however, is the large number of samples required by this encoding,
typically O (2D) where D is the dimension of the function being encoded. In
radiosity calculations, for example, this is not a concern since the problem is
typically over-constrained. For animation, however, each sample represents a

hard-won animation, a precious commodity. An interpolation scheme needing

101

fewer samples must be used if the number of control knobs desired is high.
For this reason, a radial basis function, or RBF, encoding was used. In partic-
ular, the Verbs & Adverbs system uses a radial B-spline as its basis function.
This encoding has the advantage that it leads to an interpolating space, thus
preserving exactly each example animation. Wavelets, on the other hand, are
typically approximating encodings. Further advantages include speed of eval-
uation and fitting. RBF approximation has potential pitfalls which will be
discussed in this chapter. Extensions to the basic technique can be used to
overcome these pitfalls.

There are a number of symbols and subscripts used in the description of
the interpolation technique. Table 4.1 synopsizes the main ones used in this

chapter.

4.2 The canonical timeline

In Chapter 3, the concepts of the canonical timeline and key-time were intro-
duced. This section explains the connection between the canonical timeline
and motion blending. As will be introduced later in Section 4.3, the Verbs &
Adwverbs system blends motions together by setting up interpolations of DOF-
curve coefficients. For a two-example verb, for instance, the blend is quite
simple. Assume the verb had one adverb. The blend would be related to how
close the desired motion was to the examples’ adverb values. If the desired
motion was half way from M; to My in adverb, then a 50% blend would be
used.

To illustrate the importance of blending examples in the canonical time-
line, rather than in the timeline in which the examples were designed, consider
the motions shown in Figure 4.1. At first glance, the blend would be obvi-

ous: right up the center. A closer look at the distribution of the temporal

102

170 7 U] DLIDUIY)

sowit Lo unN yr-+) I OUIT} OUWIT}-ADY]

+ OUIL} 30D

oSuel | o[qeLIRA owIL T,

'd 0y ouR)SI(] 1 p 90UR)SI(]

1y D JUOIDIJOO)) TedUl |

SQUIAPY WM N T XopUul (IoAPY] 174 siseq] Ieour’|

¥l A JUSIOJO0)) [RIPRY

TV U3 POjRIDOSSE SISe(¢ qd stseq [eipey

sowr Ifio Sywun N 1 XopUul owWI}4d3] w)i QuWII}-ADY]

sopdwwxsywn T | Joqunu ojdurexo UOION ! d | soedg qieapy ur juiog

Yl q o [013U0) §-q

dOWnN "1 xoput sut[ds-g Y q ourds-g
AOqWNN T xopul 1O L

sojdwnrsywn T | Ioqunu ojdurexs UOTOIN 1 0 100

sopdwwxswn T | Ioqunu ojdurexe UOION ? W o[durexs UOI)OTN

oduer jdurosqns Surmeawr jdrrosqns pdrosqng | o[qreLIeA 199[q O

Table 4.1: Terminology

103

Figure 4.1: Motions M; and M,

samples, however, will reveal that there is a different phrasing to the two mo-
tions. Figure 4.2 shows a plot of one of the DOF-curves for each of the two
motions, showing how they differ. Each motion has four key-times: start,
first-speed-change, second-speed-change, and stop.

If blended without respect to these key-times, the resulting motion is
strange, as shown in Figure 4.3. By lining up the motions in the canonical
timeline, however, the blend is better. Figure 4.4 shows this. The timing
information lost in canonical timeline can be synthesized from the examples.
Recapturing expressive timing is often vital to the success of an interpolated

motion.

Key-times

Key-times and the canonical timeline were both introduced in Section 3.4. A
graph of key-times plotted against canonical time for a collection of walks is
shown in Figure 4.5. The key-times were placed at the foot-down events, as

shown in Figure 4.6. While the timelines progress in a relative lockstep, small

104

Time

X-Translation

Figure 4.2: Plot of X-translation for M; and M,

Figure 4.3: Strange blend due to incompatible timelines

105

Figure 4.4: Good blend with canonical timeline

variation is seen. These variations correspond to differences in the relative
durations of portions of the walking cycle in the different examples.

Examples need not have such similar key-time graphs, however. A graph
for a selection of idling motions is shown in Figure 4.7. Notice the greater
variation in timing for these motions. For example, take two extreme idling
motions, one a despondent hands on hips motion and another a brusque, angry
hands on hips. For these two motions, the key times would be at the following
moments: hands leave side, hands on hips, hands leave hips, hands at side.
These key-times are represented in canonical time, and result in the graph
shown in Figure 4.8.

The sad timeline shown in brown and the angry in red. The angry idler
keeps his hands at his side and snaps them quickly to his hips, as evidenced
by the small time it takes to get from the K; to Ky, shown by the short region
between the two red dashed lines on the vertical (verb-time) axis. If we were
to blend the two motions at a particular verb-time 7', for example, the result

would be that shown in Figure 4.9. Notice the odd backtracking in the path

106

Figure 4.5: Key-times for a walking repertoire

Figure 4.6: Walking key-times placed at foot-down events

107

Figure 4.7: Key-times for a idling repertoire

Arms come up
during this region
of time

Figure 4.8: Key times for two extreme hands-on-hips idles

108

Figure 4.9: No key times blend

Figure 4.10: Use key times

109

of the arms. If the blend is done in the canonical timeline referenced by the
key-times, the blend is over corresponding moments in the two motions, and
results in a better blend shown in Figure 4.10 as evidenced by the smoother
arm trajectories.

The examples are sampled before they are used in the construction of the
interpolating spaces. As the DOF-curves must be continuous, this is a simple
process. One potential problem with using the canonical timeline, however, is
that it destroys timing information. Recall the previous example. The “anger”
conveyed in the hands on hips is conveyed partly in the differing arch of the
back, but the bulk of the emotional content was expressed in the timing of the
motion. Clearly, some mechanism must be used in order to preserve timing
and duration information while using the canonical timeline for interpolation.

Each motion has a set of key times (the last of which is the duration),
however, and these can be considered yet another set of coefficients to be
interpolated using the same multidimensional interpolation scheme as used
for the DOF curve coefficients.

So, the number of separate interpolation spaces needed for a motion M is
(NumCP x NumDOF + NumKeyTimes) for a motion where each DOF is en-
coded using the same representation and (TotalCoefficients + NumKeyTimes)
for a motion with a heterogeneous set of DOF representations. The latter can
be useful for cutting down on the number of coefficients required to encode

relatively low-frequency DOF-curves, such as often occur in the spine and knee.

4.3 Verb construction

Chapter 3 showed how to construct a set of examples obeying the example cri-
teria. Recall that the examples, by the verb-construction stage, are in canon-

ical form, which includes being in the canonical timeframe. The next step in

110

the production pipeline is to construct from them a verb. This verb represents
a continuous “space” of motions parameterized by a set of adverbs. A point
in this space represents a complete animation for a particular combination of
adverb settings. These settings may change from one moment to the next
if, for example, the emotional state of the actor changes or the environment
changes.

The goal is to produce at any point p in the adverb space a new motion
M(p,t) derived through interpolation of the basis motions. Since animation
source data is previous, interpolating the examples is an added requirement.
Therefore, when p is equal to the adverb setting for a particular example
motion 7, M(p,t) = M;(t).

Each example motion has one free variable for each control point defining
the DOF curves and one free variable for each key-time. The time warping
described in Section 4.2 ensures that corresponding control points in each
example motion specify similar moments in each motion, even if the overall
lengths and internal phrasing of the example motions differ. This allows us to
treat the example motion interpolation as a separate problem for each control
point and each key-time (i.e. TotalCoefficients + NumKeyTimes individual
interpolation problems).

The standard problem of multivariate interpolation is as follows: given N
distinct points p; in R™ and N values v; in R, find a function f : R® — R,
such that for all 7, f(p;) = v;, and such that f does “the right thing” between
the points p. In general, “the right thing” means filling in the space between
data points as smoothly as possible. The potentially high dimensionality of the
space defined by the adverbs, coupled with the desire to require few example
motions (perhaps only two or three times the number of adverbs), presents dif-

ficulties for many interpolation methods. Given these requirements, a combi-

111

nation of radial basis functions and low order (linear) polynomials was selected
for this problem. The polynomial function provides an overall approximation
to the space defined by the example motions. It also allows for extrapolation
outside the convex hull of the locations of the example motions. The radial
bases then locally adjust the polynomial to interpolate the example motions
themselves.

Radial basis functions have the form:

R; (di(p)) (4.1)

where R; is the radial basis associated with M; and d;(p) a measure of distance
between p and p;, most often the Euclidean norm ||p —p;||2. Because the sums
of radial bases cannot represent an affine or polynomial function, radial bases
are often augmented by adding a polynomial of fixed degree.

Details of the mathematics for this type of interpolation can be found in
the seminal work of Micchelli [103] and in the survey article by Powell [117].
Radial basis functions have been used in computer graphics for image warping
by Ruprecht and Miiller [126], and Arad et al. [3]. Pighin, et. al., [115] used
radial basis functions to perform blending of facial texture data.

Each of the DOF curves 6; are defined by B-spline coefficients, b;;, where k
varies from [1 ... NumCP]. The value of each interpolated DOF curve coefficient

in this space, b;r(p), is defined as

NumFEzamples NumAdverbs
bi(P)= Y rgpRi®)+ Y, aAp) (4.2)
=1 =0

where the r;;, and R; are the radial basis function weights and radial basis
functions themselves and the a;; and A; the linear coefficients and linear bases

as explained in Section 4.3. Interpolated key-times are similarly defined as

NumEzamples NumAdverbs

EnP)= Y. rmR®)+ D amA(p) (4.3)

=1 =0

112

For each verb there are (NumCP x NumDOF) (or TotalCoefficients for a
mixed representation verb) control point interpolations (Equation 4.2) and
NumKeyTimes key-time interpolations (Equation 4.3).

The remaining problems are choosing the specific shape of the radial bases
and determining the linear and radial coefficients. The radial basis shapes are
determined by the spacing of the examples in the adverb space. The coefficients
are determined in two steps, by first solving for the linear coefficients and then

for the radial basis coefficients.

Linear approximation

In the first step, the linear coefficients are found by fitting a hyperplane
through the adverb space that best fits the variation across the example mo-
tions of the selected control point or keytime. The linear basis functions are
simply A;(p) = py, the I component of p, and Ay(p) = 1. An ordinary least
squares solution determines the NumAdverbs + 1 linear coefficients, a;j;, that
minimize the sum of squared errors between

NumAdverbs

bk (P) = Y @Al (pi), (4.4)

1=0

and b;;x, the actual B-spline control point (or key-time) being interpolated,
where p; is the adverb setting for the i example motion. Letting b;z and
Bjk denote vectors of each b;;;(p;) and Eijk(pi) for a fixed j and k, the linear

approximation leaves the residuals

bji = by — by (4.5)

It is the job of the radial basis to interpolate these residuals.

113
Radial basis function approximation

At this stage, one radial basis function is defined for each example motion.
Later, in order improve the technique, a hierarchy of radial basis functions
will be used. This will be explored in Section 4.6. The radial basis functions
are solely a function of the distance, d;(p) = ||p — p:||2 between a point in the
adverb space, p, and the point in the adverb space corresponding to example
motion 4, p;. The radial basis itself, R;(p), has its maximum at p; (i.e., where
d = 0). In order to limit each example motion’s influence to a local region of
the adverb space, a radial basis function with compact support is used. This
allows, as will be explained in coming sections, local refinement of the verb.
There are a number of choices for the specific shape of the radial basis. For its
combination of simplicity and C? continuity, a radial B-spline was used with a
cross section of a dilated B-spline, B(g). The dilation factor, é, is chosen for
each example motion to create a support radius for the B-spline equal to twice
the Euclidean distance to the nearest other example motion. For a = 1, the
cubic B-spline has a radius of 2.0, thus « is simply the minimum separation
to the nearest other example in the adverb space. Given this definition, it is
clear that the example motions must be well separated.

The coefficients, r;j;, can now be found for each DOF curve coefficient and

key-time by solving the linear system,

DI'jk = bjk;

where rj; is a vector of the r;;, terms for a fixed j and %k, and D is a square
matrix with terms equal to the value of the radial basis function centered on

motion ¢; at the location of motion 73. Thus

Ril (plz)
=B (7).

Results using this technique are shown in Chapter 6.

114

4.4 Kinematic constraints

Earlier, key-time annotation was introduced as a method for making the Verbs
& Adverbs system handle motions with different duration or internal timing.
When motions are blended, previously solid foot constraints can become some-
what wobbly, especially in regions of the interpolation space far from any ex-
ample. The animations produced in these regions of the adverb space can be
corrected by fixing kinematic constraint violations using standard techniques.

An important aspect of a motion is the constraints imposed upon it. For
example, a walk is defined by a period of support during which one or both
of the feet are stationary on the floor. Along with the DOF values, a motion
needs to be able to answer questions concerning the active set of constraints
at a time 7.

Why is this important when the example motions encode the constraints
implicitly? When a motion M is defined on a skeleton S, the constraints will
be correct, but often the motion or skeleton is modified or multiple motions are
blended as in during a transition. In these situations, the constraints can be
violated slightly. Since constraints like foot support are visually crucial to the
perceived overall quality of a motion, even minimal violations are distracting.
Effective 1K is essential for cleaning up these problems and is essential for

run-time-modifiable 3D figure animation.

Constraint specification language

A skeleton can be simply defined as a hierarchical collection of joints, some
articulated and some not, each separated by an offset, possibly of zero length.
Kinematic constraints are defined upon these joints. A common constraint,
one used to describe support phases of a walk, for example, could be called a

stay-put constraint. This can be defined by the tuple {¢*,¢¢ j, P}, i.e. from

115

Figure 4.11: Support constraint for a walk

t* to t° the joint j should remain at point P relative to the coordinate frame
in which the skeleton is rooted. The times are expressed in canonical in order
to deal with the changing duration and timing caused by changing adverbs.

More generally, a stay-put constraint, C, can be defined by
C={1jP,F} (4.6)

where F is the frame of reference in which P is defined. Such a constraint
can be used to handle many tasks. A common example would be the walk, as
shown in Figure 4.11.

The red region shows the support constraint from ¢t = 0.38 to t = 0.68.
These verb times were recorded for the verb at a particular adverb setting p.
F¢, the global frame is the constraint reference frame, P the point where the

foot touched down in F¢, and j the foot.

116

Another, less simple, example is catching a ball. Suppose one knew that
the ball was to be caught at a certain time ¢* and held until ¢¢. The constraint

would be

Ceaten = {t*, 1%, jhand, (0,0,0) , Fpan} -
This constraint, when enforced, would mold the hand to the trajectory of the
ball as defined by the ball motion, when this is probably not the desired effect.

A better solution would be to impose 2 constraints, one to catch the ball, and

another to hold the ball:

C; = {t’t", jnanda, (0,0,0) , Fpay }
CQ - {thutevjballa(oaoao)7Fhand}-

C, constrains the skeleton’s hand to be at the ball from ¢* to t", when the catch
occurred. C, constrains the ball, yet another actor, to be at the skeleton’s hand
from " to ¢°.

These few examples form a basis of how a constraint specification lan-
guage would be formed. Other constraint forms, like look-at which lines up a
frame of reference along a vector to another frame of reference, and track-path
generalizes the stay-put by replacing the position with a function returning
position, round out a constraint specification. Other forms could be added as

expressiveness dictates.

Automatic Kinematic Constraints

Some of the inverse-kinematic constraints in a motion can be detected auto-
matically. Michael Gleicher takes this to an extreme in his animation work,
automatically calculating hundreds of spacetime constraints on a motion [55].
Short of this, however, some simple techniques can be used to find some of
the constraints, offloading some of the burden from the animator or motion

capture technician.

117

Support constraints are the easiest to detect as they place a part of the
skeleton, typically a foot, in a single spot in a reference coordinate frame over

a short interval of time. A support constraint, C, would be one of the form:
C= {tsvteajé’?PsaFg} (47)

where T'(t¢) — T(t*) is larger or equal to some prespecified minimal duration.
The support joint, js, needs to remain at Py in the global reference frame,
Fs. Noting that motion capture data is noisy and that hand animation is
rarely designed in a state of absolute perfection, the point Py is unlikely to be
pristine, so the search is for periods of time where P, moves a small amount.
If this is below some defined threshold, the centroid of that region is tagged
as a support point. This technique was used effectively by Rose, et. al., in the
detection of support points duration the creation of torque-minimal transitions

[124], discussed in Appendix B.

4.5 The verb design loop

The mechanism described thus far can be used to produce controllable anima-
tions which keep the aesthetic of motion capture of hand designed source, but
another level of quality and interactivity of design can be achieved through
refining the initially constructed verb. This process is depicted by Figure 4.12.

Once the designer creates a verb from the initial examples, the verb is
inspected by executing the verb at different adverb settings, p, both inside
and outside the convex hull of the examples. In general, the verb’s output
is tolerable (but not necessarily optimal) inside this hull and is useful for
extrapolation in a region near the hull. As p drifts further from the examples,
the verb’s output generally becomes unacceptable since linear approximation

is an insufficient interpolation mechanism for animation. By fixing problem

118

construct make inspect good use
initial > a > the > the
examples verb verb verb
LN o
8
modify verb
output at 4
some bad \
p

Figure 4.12: Verb refinement process

areas inside the hull and outside, the animator can both improve the overall
quality of the interpolations and provide for a greater range of extrapolation.

If during the inspection process the designer finds a region which is un-
acceptable, the output of the verb at that p is taken. Note that this is a
simple (basic) motion defined by DOF-curves which are themselves defined by
coefficients. This motion is modified and reinserted as a new example. If this
M(p, 7) is inside the convex hull of examples, typically it is relatively close to
being acceptable. If it is outside, it can be close or far from useful depending
upon from where in the adverb space it was taken. By iterating this pro-
cess, more and more of motions defined for the adverb space become quality
motions.

M(p, 7) is improved either through recapturing a trained motion cap-

ture actor or, more likely, with keyframing tools such as SoftImage™"

or
8D-Studio/Maz'™". Adding a new example into the verb requires setting the
key-times and resolving the linear systems which define the radial B-spline and
linear approximations. This can be done quickly since the current solutions
are likely to be nearly correct for the new example. This refinement process
becomes a new way for an animator to design animations and a new way for

the animator to think about interactive animation.

A simple walk with one adverb, happiness, was designed by an anima-

119

tor trained with the Verbs & Adverbs system. The initial verb, defined with
three examples, is shown in Figure 4.13. The examples for this verb span
p = {—10...10}. The figure shows some extreme extrapolations, some useful
ones and good interpolations. The animator chose p = 18 (Figure 4.14) as a
candidate for refinement. He fixed the foot slide problem, dealt with some of
the more extreme eccentricities, and added this as an example to the verb. The
results are shown in Figure 4.15 and exhibit a greater range of useful motions.
This figure shows the happy side of the scale, showing the new example at
+20. A comparison of the changes our animator made to the initial too-happy
walk are shown in Figure 4.16. The initial too-happy is yellow and the new
example motion made by changing it is shown in green.

Unfortunately, the animator loop can interact poorly with the verb mech-
anism as described so far. This interaction can turn a refinement step into
one that decreases the overall quality of the interpolations for a large portion
of the adverb space. This occurs when two (or more) examples are placed too

near to one another. Fixing this shortcoming is the subject of the next section.

4.6 Multiresolution radial basis function ap-

proximation

Let us reconsider the walk example from the last section. It is a simple one-
adverb verb so will illustrate the problem of example closeness well. The
original verb consisted of three examples at happiness -10, 0, and 10. A small
subset of the RBF approximation curves for some of the DOFs are shown in
Figure 4.17. These curves are nicely smooth and interpolate the examples.

If we duplicate the middle example and place it at happiness 1.0, the

smoothness of the approximations deteriorates as shown in Figure 4.18. This

Happiness

\\WW‘QN %K\%\K\\ \\ +20 Too-happy
‘”W Ul “LL/

+15 Quite-happy

+10 Happy

+5 Almost-happy

AN YN
)

) ‘

0 Neutral

-5 Almost-sad

-10 Sad

-15 Quite-sad

-20 Falling over sad

Figure 4.13: Initial verb to be refined

120

121

Foot support
dliding

Figure 4.14: What’s wrong with the overly happy walk?

is due to the way in which the radii for the radial B-splines are chosen: twice
the distance to the nearest example. In essence, this causes the two middle
examples to have a very local effect. The linear approximation represented by
the line in the figures is also affected since the two middle examples are given
double weight. The lack of smoothness in the coefficient interpolations affects
the resultant motions as shown in Figure 4.19. Notice that the motions in the
column A (no extra example) form a more smooth interpolation from neutral
(happiness = 0) to near-sad (happiness = -3) than those in the other columns.
Also notice that as the examples get closer together (columns B, C, and D),
the approximation becomes one between the two extreme examples (happiness
= 10 and happiness = -10) with a spike in the middle. In contrast, the column
A interpolation is much more a function of all the examples all over the space.

The RBF approximation scheme can be improved through by taking two
key steps: recursive clustering of close points and recursive multi-resolution

approximation given the cluster assignments. The technique is detailed in the

Happiness

+25 Amazingly-happy

+20 Extremely-happy

+15 Quite-happy

+10 Happy

+5 Almost-happy

0 Neutral

Figure 4.15: Improved walk

122

123

Toned
Improved down extreme
leg arm swing
stance

Figure 4.16: Differences at happiness = +20

remainder of this section.

Clustering

The problems with the approximation described thus far are two-fold. First,
the radii for the two center basis functions are too small. This in effect cancels
the contribution of these example throughout most of the space. Second, the
center of the approximation is given too much weight in the construction of
the linear approximation. Both of these problems can be alleviated through
clustering. Clustering is the process of taking multiple points and treating
them as one. Figure 4.20, for instance, shows the middle two points treated
as a cluster. The faint line shows one level of the approximation with the two
middle points treated as one. The thicker line shows the full approximation
that interpolates all the example points.

The reader will likely see the value of this: clustering is used to reduce
concentrations of dots into single (synthesized) examples and then RBF ap-
proximation is used on this new (reduced) data set. This is followed by a

recursive refinement of the space thus yielding a multi-resolution RBF approx-

124

Figure 4.17: The simple technique works well for these examples. The green
dots are the examples, the orange line the linear approximation and the blue

line the complete approximation.

125

Figure 4.18: The simple technique fails for these examples. The green dots

are the examples, the orange line the linear approximation and the blue line

the complete approximation.

126

behaved interpolations lead to unsatisfactory results

Figure 4.19: Ill

127

Figure 4.20: Two close examples made into one cluster

imation scheme. Before I describe the approximation scheme, the process of
cluster construction is outlined.

For a verb with d adverbs, d + 1 examples are the minimum needed to
establish the linear approximation. A least d + 1 clusters, therefore, must
be used. The number of clusters, however, should be determined from the
structure of the data. Regions in space finely sampled with examples should
be treated as distinct clusters.

Clusters are established here using a randomized algorithm run many
times in order to establish confidence in the solution. The basic algorithm is

detailed in Algorithm 4.1.

128

Algorithm 4.1 Basic clustering scheme
BasicClustering (P ,C ,n)

01 // n , the number of clusters, C' , to form over the k example points P
02

03 Establish n initial clusters C located randomly within the convex-hull of P
04

05 for each P; , assign it to the nearest cluster Cy

06

07 for any empty clusters C) , steal a point randomly from the clusters with
08 2 or more to establish a singleton cluster

09

10 // now the initial case is now established

11

12 repeat until no cluster reassignments occur

13 center each C; as the average of the P; in Cj

14

15 for each point F;

16 if there is a cluster C; closer than the one to which it is currently assigned
17 reassign P; to () unless doing so would empty C)

This algorithm performed many times and the best result is chosen to
establish the final clustering. The best result is the one with the smallest
cluster radii where each cluster radius is the distance from the center of that
clusters to the farthest point in that cluster from the center. The algorithm
converges very quickly, so it can be run often to establish a reasonably high
confidence in the solution. A globally-minimal solution is not required. At
line 10, each cluster is guaranteed at least one member. Line 17 ensures that
no cluster is ever emptied. Singleton clusters, of course, are allowed. The
quality of the clustering is assigned to be the sum of the radii of the individual
clusters. If there are n clusters for n points, the clustering will have zero cost.
Randomization is used to establish confidence in the solution rather than an
analytical non-linear optimization.

Figure 4.21 shows the iterations for one run of this algorithm. The colors

129

-
1 2
“ 4 l
Figure 4.21: Clustering algorithm in action

indicate the clustering. Small circles are the examples. Color indicates cluster
assignment. Cross-hairs mark each cluster center. Large colored circles indi-
cate the cluster radii. Iterations 1 to 2 show the largest difference with the
purple and blue clusters taking points away from the green and tan clusters
respectively. The initial purple cluster is one of the “stolen” point taken from
green, i.e. purple initially had no elements before the end of iteration 1. Iter-
ations 3 and 4 see a balancing of the purple and red clusters. The algorithm
took 4 iterations to arrive to a local minimum. Note that the cost is assured to
monotonically decrease due to the nature of the algorithm. Running this algo-
rithm many times with random starting guesses will build up confidence in the
solution. As stated before, finding the global minimum is not a requirement.

One problem with this algorithm is that it takes as input the number

130

of desired clusters where this is a quantity ideally determined in a program-
matic manner. Improving the algorithm, however, is not difficult, as seen in

Algorithm 4.2.

Algorithm 4.2 Improved clustering algorithm

ImprovedClustering (P , C , maximum-cost, maximum-clusters)

clustercount = d

repeat until no splits occur

BasicClustering (P ,C ,clustercount)

cost = Y (radii of C)

if ((cost > maximum-cost) && (clustercount < maximum-clusters))

clustercount++

C' is the completed cluster assignments, and d the number of adverbs,
dimensionality, of the points, P.

This algorithm will modify the clustering until the best result is reach
subject the supplied restrictions on cost and cluster-count. For circumstances
where the animator has clearly defined clusters due to the pattern of their
modifications, however, it is not unreasonable to ask them to supply the cluster

count, in which case the basic scheme of Algorithm 4.1 will work fine.

Multiresolution technique

Each cluster acts as an example point, thus collapsing groups of proximal ex-
amples. The base cluster level has few points widely spaced from one another.
The radius assignment of twice the distance to the nearest example (cluster),
therefore, does not ruin the approximation.

The linear term, Equation 4.4, was formulated as
~ NumAdverbs
bk (P) = Y A (pi).

=0

131

In order to take into account the cluster level, another subscript is needed
for the examples (clusters) p:

NumAdverbs

Bijk (po,z‘)z Z ajklAl (Po,i)-

1=0
The zero-th level of clustering corresponds to the coarse approximation. The
highest (most fine grain) level is simply all the example points treated as
singleton clusters and with cluster radii 0. Note that they do not have radial
basis radii of 0. Those are calculated using the normal technique of twice
the distance to the nearest other cluster (or on the finest level, nearest other
example).

The residuals, bj, = bj, — Z)jk (Equation 4.5), need to be solved for by
the radial basis functions. Rather than doing this in one step, however, it is
done iteratively from coarse to fine resolution. The coefficients, now r.;j; to
account for this residual can be found for each DOF coefficient and keytime by

solving the linear system

Dcrc,jk = bc,jk (4-8)
where ¢ is the cluster level from 0 (coarse) to NumClusterLevels (all-examples)
and r. j; is a vector for the r;j; for a fixed ¢, j, and k, and D a square matrix
with terms equal to the value of the radial B-spline centered on point p.;, at
the location of p.;,. Thus

Dcil,iz = Bc,il (M) : (49)

ac,il

The value of l_)c’jk is the sum of the linear approximation and the contribution
of all the layers up to ¢ — 1. The interpolated coefficients, therefore, can be

calculated as

NumAdverbs NumClusterLevels NumFEzamples

bik(p) = Z ajmAi(p) + Z Z TeijkRei(P). (4.10)

=0 c=0 i=1

132

4.7 Efficiency concerns

There are three main efficiency concerns, the speed of the system at author

time and run time, and the storage efficiency of the representation.

Runtime evaluation

This technique is efficient. It can be used to drive animations for multiple
figures at real-time frame rates. Indeed, the system is bound primarily by the
frame-rate of the 3D rendering of the figure. Assuming a constantly changing
adverb setting p, a certain number of coefficients must be evaluated at each
timestep. The number of the coefficients is (4- NumDOF + NumKeyTimes) for
a B-spline encoded solution since for a given time 7, 4 coefficients are required
for each DOF curve and all the key-times are required to transform 7 into
canonical time t.

Evaluating each coefficient requires an evaluation of a hyperplane and
the radial basis functions for each of the examples and the clusters. Each
clustering level must have at least one fewer cluster than the next higher level,
which could lead to O (n?) evaluation time where n is the number of examples
in finest level of clustering, i.e. the original number of examples. If we assume
a halving of examples (clusters) at each level of clustering, a conservative

assumption, we can simplify to 14 2 - n or just O (n).

Author time evaluation

While runtime evaluation time is of paramount importance, the cost to set up
the interpolation spaces is also an issue, especially considering the iterative
refinement aspect of the animator loop.

Setting up the initial hyperplane requires O (n?) in order to solve the non-

133

square linear system using singular value decomposition, which was chosen for
its robustness. As n, the number of examples (or coarse level clusters) is
typically small, this use of SVD does not overly impact efficiency. We use
Gauss-Seidel at each level of the RBF approximation, since the D matrices
are square and diagonally dominant. This iterative algorithm will converge
quickly as the solutions at each level of the hierarchy are already reasonably
well approximated by the approximation at the lower levels of the hierarchy.
Furthermore, clever bookkeeping can facilitate the updating of the solu-
tion without starting over. Thus, in conjunction with Gauss-Seidel we achieve
fast re-solving of the systems as the animator moves example points around.

Large changes in the clustering will require new solutions.

Storage requirements

The MRBF verb encoding is space efficient and serves as a reasonable com-
pression scheme for repertoires of similar motion when compared with typical
techniques commonly employed in the game industry. The example motions
that constitute a verb are stored in some form either as simple motions such as
B-spline or piecewise-linear, or as functional compositions with simple motions
as the leaves in that expression graph (Chapter 3). Let us assume they are
stored simply with each example requiring (NumDOF x NumCP) coefficients
of storage. This is not a restriction since any functional composition can be
well approximated with a simple representation as desired.

The total coefficients required for the examples, therefore, is (NumDOF x
NumCP x NumEzamples). For the the walk verb from Christian’s motion
capture session, Figure 6.2, that is (44 x 32 x 20) = 28160) coefficients.

The MRBF approximation requires (NumKey Times+ NumDOF x NumCP)

separate interpolation spaces. Each of those requires (NumAdverbs + 1) coeffi-

134

cients for the linear approximation and) |, NumEzamples, coefficients for the
radial basis functions. Using the same conservative estimation of cluster halv-
ing, 2- NumEzamples yymcisterLevers COEtlicients are required, twice the number
of examples before clustering. For the walk, therefore, each MRBF space needs
(44 1) + (2 x 20) = 45 coefficients for a grand total of 45(4 + 1408) = 63540
coefficients, not appreciably more than the storage requirement for the exam-
ples themselves. Once the verb is complete, the examples need no longer be
stored.

A fine question to ask is whether fewer basis motions are needed in a
Verbs € Adverbs based application than another. To get the same gradation
of motion, games will typically store many variations, often many more than
the number of examples needed to construct a verb with the same range of
motion. A verb, therefore, is a more efficient representation of a particular
motion than storing a number of variations. This is not surprising, as the
MRBF interpolation seeks to capture what a particular motion does over a

range of variation.

4.8 MRBF interpolation and human biome-

chanics

As will be seen in Chapter 6, walking, running, reaching, and idling have
all been shown to be amenable to the Verbs € Adverbs technique. Smooth
blends of many motions in the multi-dimensional adverb space yields convinc-
ing controllable animations. Whether this technique can, in general, work for
a myriad of human motions with many adverbs, is still an open question. The
Verbs € Adverbs technique interpolates the motions produced by a biologi-

cal system, rather than the control system used to generate the motions. Is

135

smooth interpolation of motion a reasonable things to do?

A human’s motion is dictated by three primary factors: the environment
in which he is placed, his internal control system (brain, neurons, reflexes),
and the dynamical properties of the underlying biomechanical system (joints,
tendons, muscles, bones). Hogan [71] [72] shows that the two latter systems,
when coupled, form, in essence, a single biomechanical system. Furthermore,
he showed that in the absence of new forces (typically muscle forces), the
system only decreases its overall kinetic energy. This is due to factors such as
friction in the joints. Biomechanical systems are thus critically damped and
since muscles can only inject a finite amount of energy, the system as a whole
will always have bounded (and in general decreasing) energy. The end result,
Hogan showed, is that motions produced by biological systems are smooth.

This is hardly surprising, but extremely important to establish the use-
fulness of interpolation for simulating biomechanical systems. The damped,
smooth nature of human physiology has been used effectively in the graphics
community. Hodgin’s group relies upon the critically damped nature of the
system in their work on controllers [70] [68]. Grzeszczuk [59] showed the useful-
ness of neural-network approximation for learning dynamics control strategies
and, lately, for learning dynamics systems in total [60]. Neural-networks, of
course, are smooth n-d function interpolators like RBFs. RBFs are often formu-
lated using neural-network-like structure and nomenclature. Gelfand, Lane,
Handelman, Gullapalli [84] [62], and others showed how neural-network-like
entities called cMACs (Cerebellar Model Articulation Controllers) could be
used to effectively generate human motion control strategies in concert with a
dynamics simulator.

Dynamically simulated motions have a major drawback in that the an-

imator, a talented ally in the production environment, is removed from the

136

process. Interpolating control systems, therefore, is insufficient for making
best use of an animator or a library of motion capture data. Actual motions,
the things animator’s develop, are what must be interpolated.

A biological system’s motion is proportional to the second derivative of
the forces acting upon it (F = ma). These accelerations are driven by the
control system, which was shown to be smooth. Continuous acceleration im-
ply smooth velocities and, by extension, positions. Smooth changes in the
controller yield smooth changes in the motions produced by the system. In-
terpolating motions using a C-2 continuous interpolation scheme like MRBFS,

therefore, is a reasonable way to interpolate human motion.

4.9 Some further problems

There are some questions which could be posed concerning the Verbs € Ad-

verbs mechanism:

e What is an “accurate” parameterization of the examples?

e How do the adverbs interact with one another, i.e. are the chosen ad-

verbial axes orthogonal?

e What axes are needed in order to capture the space of human emotion

in movement?

Each of these constitutes an open problem related to Verbs ¢ Adverbs.

Example parameterization

Ensuring the accurate assignment of adverbs is difficult. For some adverbs,

namely the structural ones, this is a relatively easy process since the adverb

137

value is objective. In these cases, adverb assignment can be done automati-
cally. The reach verb, as will be seen in Chapter 6 (Figure 6.4) has three axes:
the X, Y, and Z offset of the hand goal from the position of the body root at
the start of the motion. Once the goal-reached key-time is set, these adverbs
can be set automatically.

If, on the other hand, the adverbs were subjective, such as “happiness”,
setting the adverbs is a trickier task. The meaning of a 10.0 happiness value is,
at best, ill-defined. While psychological studies of human motion might prove
useful, the work presented here trusts the designer to recognize the differences
between the examples and set the parameters in an appropriate way.

Additionally, the designer must ensure that the suite of verbs which will
later be used to construct a verb-graph (Chapter 5) are parameterized in a
consistent way. A 10.0 happy should have the same emotional impact for a
walk verb as it does for a idle verb. Likewise, if verbs from many designers
are used to form a single application, care will need to be taken to ensure
even treatment of the adverbs so as to avoid any strange transitions. This
could occur, for example, if one verb had a distribution of examples along a
happiness axis from [—100...100] and another from [—10...10] when in fact

the ranged over the same gamut of human happiness.

Adverb orthogonality

The walking verb (Figure 6.2) used a number of examples which had non-
zero components in multiple adverbs. The “angry” example, for instance, was
deemed to be unhappy and knowledgeable. Thus, the unhappiness stemmed
from an understood source yielding an angry reaction. The “despondent”
walker was possessed with unhappiness not understood. This pop-psychology

mixing of human emotion is open to many pitfalls. So far, these problems have

138

not proved too troublesome.

When the walk verb was designed, the axes were chosen and a number
of examples placed in the space defined by those adverbs. The unhappy plus
knowledge equals anger was a rationale used to place the angry example. A
different set of axes, however, could easily have been chosen. “Angriness”
could be one such axis.

Furthermore, the orthogonality of happiness and knowledge is in ques-
tion. Whether a person can be happy with no correlation of knowledge is
a psychological question outside the scope of computer graphics. Primarily,
the Verbs € Adverbs group chose to ignore this potential problem since it has
not seemed to affect the common-sense usage of our system from the human
figure animation standpoint. If Verbs & Adverbs were to find usage in the psy-
chological research community, these issues would need to be addressed more

satisfactorily. An overview of one such effort follows.

Complete parameterizations

The emotional axes used in our examples form a very ad-hoc set of this the
author and animators in the project thought useful. Clearly, happiness and
sadness are insufficient adverbs if one’s goal is to parameterize the complete
gamut of human emotion. An interesting question to ask, therefore, is what set
of adverbs can be used to describe the emotional content of all human emotion.
Movement analysts have been interested in this very subject. Bartenieff [17]
provides a good introduction to the field of Laban notation, which is one of
the major techniques for analyzing and parameterizing human motion.
Rudolf Laban created a form of analysis which has come to be called La-
ban analysis or Laban notation, used often by movement analysts and dancers.

He identified a number of parameters which can be used to describe the qual-

139

Effort || Indulging | Figthing

space || indirect direct

weight || light strong

time || sustained | sudden

flow || free bound

Table 4.2: Range of effort in Laban notation

itative and structural characteristics of a motion.

Effort is on the of the key ideas in the notation, and is divided into four
sub-categories: space, weight, time, and flow. Each sub-category ranges from
indulgent, or non-resisting, to fighting, resistive motions. Table 4.2 shows
these ranges.

These four parameters; space, weight, time, and flow; can be considered
adverbs in the construction of a verb with the addition of some parameters
for simple structural elements such as direction of motion, turning radius, etc.
An angry motion, for example, would be direct, strong, and sudden. A sad
motion would be sustained and bound. Whether Laban notation truly has
enough parameters to place the emotion characteristics of human motion is an
open question.

While Laban analysis provides a systematic and consistent framework, it
is not a calibrated one. A space of 10.0 is not a well-defined quantity, just as
a happiness of 10.0 is not as mentioned before. A talented movement analyst
trained in Laban notation, as a talented animator using an ad-hoc parameter-
ization, can develop a reasonable calibration and from them, reasonable verbs.
We have not, at present, worked with one so trained, though we may in the

future.

140

4.10 Conclusions

This chapter described the Verbs € Adverbs mechanism, detailing the mathe-
matics behind both single- and multi-resolution radial B-spline approximation.
Examples of the system’s output were followed by a short discussion of open
problems. Additionally, the connection between modeling human phenomena
and human processes was made.

Verbs are short segments that can perform a motion in an infinite variety
of ways. In order to create long animations, however, a mechanism for gluing
verbs together must be constructed. The verb-graph is one such mechanism

and is the subject of the next chapter.

141

Chapter 5

The verb graph:

a verb management scheme

Using multiresolution radial B-spline approximation, controllable animation
segments, verbs, can be constructed. These verbs can exhibit subtle aesthetic
variations as well as structural difference. Verbs, however, are short move-
ments. In order to make use of these verbs, a scheme for concatenating and
transitioning must be designed. In this section, the verb graph is detailed,
which is one possible solution to this problem. The work of Perlin and Gold-
berg [113], Blumberg and Galyean [20], and Badler [5], as well as The Mo-

(™D product, are alternate method