
Shape by Example
Peter-Pike J. Sloan

ppsloan@microsoft.com
Charles F. Rose, III

chuckr@microsoft.com
Michael F. Cohen

mcohen@microsoft.com

Microsoft Research

Abstract

Modern modeling systems enable artists to create high-
quality content, but provide limited support for interactive
applications. Although complex forms can be constructed
either by hand or with geometry capture technologies, once
they are created, they are difficult to modify, particularly at
runtime.
Interpolation provides a way to leverage artist-generated

source material. We present a methodology for efficient run-
time interpolation between multiple forms. Linear plus ra-
dial basis functions provide the key mathematical support
for the interpolation. Once our system is provided with ex-
ample forms, it generates a continuous range of forms we call
a shape. We also apply the shape interpolation methodol-
ogy to articulated figures and human face models to create
smoothly skinned figures that deform in natural ways. Un-
like previous formulations, the one presented here is efficient
enough to support interactive design of the abstract interpo-
lation space as well as support runtime interpolation of the
forms in interactive applications such as games.
The reader is encouraged to visit the project’s web-

site for more information and late-breaking results at
http:\\research.microsoft.com\graphics\hfap.
Keywords: Curves & Surfaces, Geometric Modeling, Hu-
man Body Simulation, Interpolation, Radial Basis, Shape
Blending

1 Introduction

The magic of computer graphics as seen in many current
movies and computer games comes at a cost. Creating the
geometric forms with which to generate synthetic charac-
ters and animating the characters to bring them to life re-
quires either highly skilled artists and/or sophisticated cap-
ture devices. Both are expensive and, in the case of highly
skilled artists, rare. This paper discusses and demonstrates
a methodology to automatically create new shapes from ex-
isting geometric forms. The paradigm presented here is one
of design by example. New shapes are created on the fly
through multi-way blending of examples. We also apply the
shape interpolation methodology to articulated figures to
create smoothly skinned figures that deform in natural ways.
Unlike previous formulations, the one presented here is ef-
ficient enough to support interactive design of the abstract
interpolation space as well as support runtime interpolation
of the forms in interactive applications such as games. Our
approach also differs from previous work by allowing for both
extrapolation and interpolation between multiple forms.
Skilled artists using current modeling software can con-

struct complex geometric shapes. Alternatively, a variety of
3D scanning methodologies are available that can capture
shapes that exist in the real world. Both of these means of
creating shapes are limited in the same way. In particular,
neither has a simple means of automatically modifying the
shapes once they have been created. In scripted settings,
such as films, automatic modification would make it easier
to avoid redundancy. For instance, an entire colony of dif-
ferent looking ants could be automatically created from a
few distinct ants. Another desire might be to create smooth
variations of shape within an individual such as the bulging
of a muscle when an arm is bent. In addition, in non-scripted
interactive runtime settings, such as games, it may not be
possible to anticipate all shapes that will be needed when
the game is played.
There are at least two solutions to the issues outlined

above. At a high cost, more shapes can be created. An
alternate solution is to try to leverage existing forms to au-
tomatically generate variations on the fly. The second ap-
proach is the topic of the work presented here.
We will present a methodology for efficient interactive de-

sign of interpolation spaces as well as runtime interpolation
between multiple forms. The forms may have been created
by artists or through geometry capture technologies. Once
the system is provided with example forms, it can generate
a continuous range of forms we call a shape. We also ap-
ply the shape blending methodology to articulated figures to
create smoothly skinned figures that deform in natural ways
by leveraging the transform blending operations in current
graphics hardware. Finally, since the same formulation can
be applied to images or texture maps, we show the system
used to interpolate between human face models by blending
both shape and texture.



2 Related work

The idea of leveraging existing shapes and animations by
modifying them is certainly not new. Morphing methods,
initially applied to images [16] [1], have recently also been
applied to 3D geometry [17, 4, 2, 6, 3]. Interpolation meth-
ods were applied to 2D vector-based drawings in [8, 11].
Much of the morphing methodology concentrates on estab-
lishing correspondences between models and/or is limited to
morphing between two models. An exception is the work
on N-way morphing in the case of images[5]. In our work,
we assume that the correspondence problem has either been
solved implicitly in the creation of the original forms or that
existing methods such as these can be used to establish cor-
respondences. We focus, instead, on the problem of efficient
blending between multiple example forms.
Rossignac [15] presented a method to blend between an

initial and final shape influenced by intermediate shapes.
Essentially, it is a weighted blend of the meshes where the
weights are defined by a bezier curve. The only shapes that
are interpolated in this construction are the initial and final
one, thus it provides only a one-dimensional parameteriza-
tion of the blending function.
Rademacher’s study [13] is similar in spirit to the work

presented here. He parameterizes geometry based on view
direction and always uses three-way blends. He also ap-
plies his method to animated view-dependent geometry. Our
work uses the more general notion of an abstract space to
parameterize the object. In addition, we use scattered data
interpolation, instead of simplex decomposition (which be-
comes intractable in higher dimensions), to do the blending.
Our work also allows us to leverage the underlying anatom-
ical structure in skeleton based figures.
Rose et al.’s paper “Verbs and Adverbs” [14] has shown

results in blending of animations. We adopt a similar in-
terpolation structure as the one described there and apply
it to shape blending. However, rather than solving a lin-
ear system per degree of freedom (e.g., vertex coordinates
or motion curve coefficients), our formulation solves a linear
system per example pose that can be shown to be mathe-
matically equivalent. We also show how such blending can
be extended to articulated shapes and to textures.
A recent work by Lewis et al. [7] applies radial basis

interpolation to articulated shapes. There are several key
differences from our work. One is that, like in [14], they set
up the problem as a linear system per degree of freedom.
Since there are typically many more vertex coordinates in
the mesh then there are examples, the system in [7] is signif-
icantly less efficient. Although there are no explicit timing
results given in [7], based on the video presented, it appears
our system is perhaps two orders of magnitude faster.
In addition, per example blending can be mapped directly

to current graphics hardware support for transform blend-
ing as shown in section 5. Finally, as in [14], we use a com-
bination of radial basis functions plus a linear hyperplane.
Without the linear component, you cannot reproduce linear
or constant changes between the examples, which can result
in higher energy (wiggly) interpolation spaces. The addition
of the hyperplane to the formulation allows for extrapolation
and results in a smoother interpolation. The efficient for-
mulation provides the ability to interactively parameterize
(and reparameterize, see section 4) the abstract interpola-
tion space. This is very powerful as a modeling tool, and
is only possible if the deformations are represented as func-
tions over example poses. We will show that our formulation
is efficient enough for both interactive (re)parameterization

Figure 1: System overview

and runtime blending.

3 Shapes and Adjectives

Figure 1 provides an overview of the three parts that com-
prise our system: Shape Offline Tools, the Shape Generator,
and the Shape Runtime System. The latter is embedded
in an application, such as a game, that uses our system to
modify a shape or skin a character as it is animated.
A designer relies on external modeling and/or geometry

capture technology to create initial forms. We refer to these
as example forms or simply examples. The Shape Offline
Tools enable the designer to organize these example forms
to serve as input into our Shape Generator. To do so, the
designer chooses a set of adjectives that characterize the
forms. For instance, adjectives that describe the form of
a human may include static aspects such as gender and age.
These axes are of interest because the form of a human arm
changes depending on whether it belongs to a male or female
or whether the person is old or young. Other “adjectives”
may describe more dynamic aspects, such as the bend of the
elbow, since the arm also deforms when the skeleton bends.
In the latter case we are not referring to the rigid body trans-
formations induced by, for instance, bending the elbow, but
rather the more subtle non-rigid shape changes in muscles
and skin.
The set of adjectives define an abstract space with each

adjective representing a separate axis in the space. Once the
abstract space has been defined, each example is annotated
by the designer by setting values for each adjective. For
example, this could include indicating the age of an example
shape and the pose. Given the annotated examples, the
Shape Generator solves for the coefficients of a smoothly
varying interpolation of the forms across the abstract space.
These coefficients provide the means to interpolate between
the example forms at runtime.
At runtime, the application chooses, at each moment in

time, desired values for the adjectives, thus selecting a spe-
cific location in the abstract space. For instance, an arm



Object Variable Subscript Range
Example X i 1..N
DOF x i 1..N

j 1..M
Point in Abstract Space p i
Radial basis R i
Radial Coefficient r i, j
Linear Basis A l 0..D
Linear Coefficient a i, l
Distance d i

Table 1: Terminology

can be specified to be more male or female, or to respond to
the bending of the elbow. The Shape Runtime System then,
given the selected location in the abstract space, efficiently
blends the examples to produce an interpolated form.
The number of adjectives defines the dimension of the ab-

stract space. We use D to denote the dimension. We denote
the number of examples included in the construction of a
shape by N . Each example form in a shape is required to
have the same structure. That is, all forms in a shape must
have the same number of vertices with the same connectiv-
ity. Since example forms must all have the same topological
structure, we do not need to address the correspondence
problem here. The number of DOFs, denoted by M , equals
three times the number of vertices in a form (i.e., for the
x,y,z coordinates).
As we describe more details of our approach, please refer

to Table 1 for an explanation of the symbols used throughout
the text.
We denote an example as Xi, where

Xi = {xij ,pi : i = 1 . . . N,

j = 1 . . . M} (1)

Each xij , the jth DOF for the ith example represents a
coordinate of a vertex. pi is the location in the abstract
space assigned to the example.

3.1 Shape Generation

Given a set of examples, a continuous interpolation over the
abstract space is generated for the shape. The goal is to
produce at any point p in the abstract space a new form
X(p) derived through interpolation of the examples. When
p is equal to the position pi for a particular example i, then
X(pi) should equal Xi. In between the examples, smooth
intuitive changes should take place.
In Lewis et al. [7] each vertex coordinate was treated as a

separate interpolation problem. Similarly, in Rose et al. [14],
each B-spline coefficient was treated separately (1200 sep-
arate problems in their walk verb) which leads to serious
inefficiencies. We develop, instead, a cardinal basis where
we associate one basis function with each example. This
leads to greatly improved efficiency as there are typically
many fewer examples than degrees of freedom (vertices in a
mesh or coefficients of motion curves in an animation). As
a cardinal basis, each basis function has a value of 1 at the
example location in the abstract space and a value of 0 at
all other example locations. This specification guarantees an
exact interpolation. For each DOF, the bases are then sim-
ply scaled by the DOF values and summed. This approach
is mathematically equivalent to the formulation in Rose et
al., but is (a) more efficient in the case of animations, (b)

can be applied to shape interpolation, and (c) is amenable
to implementation on current graphics hardware.
We still need to select the shape of the individual cardinal

basis functions. Our problem is essentially one of scattered
data interpolation, as we have few data points, the exam-
ples, in a relatively high dimensional space. Most published
scattered data interpolation methods focus on one and two-
dimensional problems. Linear interpolation using Delauney
triangulation, for instance, does not scale well in high di-
mensions. Based on our need to work in high dimensions
with very sparse samples, we adopt a combination of radial
basis functions and low order (linear) polynomials.
The N cardinal basis functions have the form

wi1(p) =
N∑

i2=1

ri2i1Ri2(p) +
D∑

l=0

ai1lAl(p) (2)

where the ri2i1 and Ri are the radial basis function
weights and radial basis functions themselves and the ail

and Al are the linear coefficients and linear bases. The sub-
scripts i1 and i2 both indicate example indices. Given these
bases, the value of each DOF is computed at runtime based
on the momentary location, p, in the abstract space. The
value of each DOF, xj , at location (p) is, thus, given by:

xj(p) =
N∑

i1=1

wi1(p)xi1j (3)

.
The linear portion of the basis functions provide an over-

all approximation to the space defined by the examples and
permits extrapolation outside the convex hull of the loca-
tions of the examples. The radial bases locally adjust the
solution to exactly interpolate the examples. We discuss the
linear approximation and radial bases in more detail below.

3.2 Linear Approximation

We first would like to form a best (in the least squares sense)
linear approximation for each DOF based on the examples
given for that DOF. In other words, we would like to find the
hyperplane through the abstract space that comes closest to
approximating the example values of that DOF. This defines
M separate least squares problems, one for each DOF vari-
able. However, since each example places all variables at a
single location, p, we can instead determine a set of N hy-
perplanes, one for each example, that form a basis for the M
hyperplanes. The basis hyperplanes are derived by fitting a
least squares hyperplane to the case where one example has
a value of 1 and the rest have a value of 0.

pha = F,

where ph is a matrix of homogeneous points in the abstract
space (i.e., each row is a point location followed by a 1),
a are the unknown linear coefficients, and F is a Fit matrix
expressing the values we would like the linear approximation
to fit. In this case F is simply the identity matrix since we
are constructing a cardinal basis. Later, F will take on a
slightly different structure as we discuss reparameterization
of the abstract space.
For didactic purposes we depict a simple one dimensional

abstract space with three examples. Figure 2 shows the lin-
ear approximation and the three radial basis functions as-
sociated with the first of the three examples. The sum of
the line plus three radial bases forms one of the three car-
dinal bases. The one-dimensional abstract space is depicted



Figure 2: Linear and radial parts of the cardinal basis func-
tion for the first example.

Figure 3: Cardinal basis functions and scaled sum for par-
ticular degree of freedom.

as the horizontal axis. The three examples are located at
p = 0.15, 0.30, 0.75. The straight line labeled A1 is the line
that fits best through (0.15, 1), (0.30, 0), (0.75, 0). A best fit
line for any particular DOF could then be evaluated by sim-
ply scaling this line (plus the other two not shown) by the
DOF value and summing.

3.3 Radial Basis

Radial basis function are characterized by having a value
that is determined solely by one parameter, the distance
from a center point in the multi-dimensional abstract space.
Radial basis interpolation is discussed in Micchelli [10] and
in the survey article by Powell [12]. Radial basis functions
have been used in computer graphics for image warping by
Ruprecht and Müller [16], Arad et al. [1] and for 3D inter-
polation by Turk et al. [17].
Given the linear approximation, there still remain resid-

uals between the example values xij and the scaled and
summed hyperplanes. To account for the residuals, we could
associate a radial basis with each DOF. Instead, we proceed
as before and use the radial bases to account for the residu-
als in the cardinal bases. The residuals in the cardinal bases

are given by

qi1i2 = δi1i2 −
D∑

l=0

ai2lAl(pi1) (4)

To correct for these residuals, we associate N radial ba-
sis functions with each example. Since there are N exam-
ples, we, thus, need N2 radial basis functions. We solve
for the weights of each radial bases, ri2i1 , such that, when
the weighted radial bases are summed with the hyperplanes,
they complete the cardinal bases (i.e., pass through 1 at the
example location and zero at the other example locations).
The three curves shown in Figure 2 are the radial bases as-
sociated with the first example.
This leaves us with the problem of choosing the specific

shape of the radial bases and determining the radial coeffi-
cients. Radial basis functions have the form:

Ri (di(p))

where Ri is the radial basis associated with Xi and di(p) is
a measure of the distance between p and pi, most often the
Euclidean norm ‖p−pi‖. There are a number of choices for
this basis. Rose et al. chose a basis with a cross section of a
cubic B-spline centered on the example and with radius twice
the Euclidean distance to the nearest other example. Turk
and O’Brien [17] selected a family of basis functions that
generate the smoothest (thin plate) interpolations. We tried
both bases. Bases with the B-spline cross-section have com-
pact support, thus, outside their support, the cardinal bases
are simply equal to the linear approximation. They there-
fore extrapolate better than the smoother, but not compact,
radial basis functions used by Turk and O’Brien. We chose
to use the B-spline bases for this extrapolation property, al-
though both choices performed well.
The radial bases weights, ri2i1 , can now be found by solv-

ing the matrix system,

Qr = q

where r is an NxN matrix of the unknown radial bases
weights, Q is defined by the radial bases such that Qi1i2 =
Ri2(pi1), the value of the unscaled radial basis function cen-
tered on example i2 at the location of example i1, and q
is the matrix of residuals between the kronicker delta and
the hyperplane approximation (Equation 4). The diagonal
terms of Q are all 2/3 since this is the value of the generic
cubic B-spline at its center. Many of the off diagonal terms
are zero since the B-spline cross- sections drop to zero at
twice the distance to the nearest example.
In practice, solving for the linear and radial portions of

the cardinal bases takes a fraction of a second. Thus, this
portion of the process can be tightly coupled in the design
loop providing artists with instant feedback on the abstract
space and an ability to move the examples within the space
interactively.
Referring back to Figure 2, we see the three radial basis

functions associated with the first of the three examples. If
these three are summed with the linear approximation, we
get the first cardinal basis, the line labeled w1 in Figure 3.
Note that it passes through 1 at the location of the first
example and is 0 at the other example locations. The same
is true for the other two cardinal bases w2 and w3.

3.4 Shape Runtime System

Given the solutions for the radial basis weights, we now have
all the values needed to evaluate Equations 2 and 3 at run-



Figure 4: Exploration of the space can reveal problems with
the interpolation.

time. The upper (
∑

wx) line in Figure 3 is simply an in-
stance of the three cardinal bases scaled by an example DOF
value and summed as in Equation 3.
At runtime, the application selects the point of interest

in the abstract space. This point may move continuously
from moment to moment as the elbow bends for instance.
The Shape Runtime System takes this point and generates
an interpolated form and delivers it to the application for
display.

4 Reparameterization and Modification of
Shapes

Once a shape has been generated, the abstract space can be
quickly explored to see the interpolated forms. It is possible
that some of the regions in this space are not entirely to
the designer’s liking. For instance, Figure 4 shows a 2D
space of interpolations of a simple three-dimensional shape.
Darker forms indicate examples and lighter forms are the
result of the Shape Runtime System (Blue and gray on the
color plate). Problem regions can be seen in each of the two
upper corners. Both corners exhibit cracks due to surface
interpenetration. Another type of problem can occur when
an interpolation changes more quickly than desired in one
region and more slowly than desired in a neighboring region,
in other words one would like to “bend” the abstract space
itself.
Three methods are available to modify the results pro-

duced by the Shape Generator. In one method a new exam-
ple can be inserted at the problem location and a new shape
generated. A quick way to bootstrap this process is to use
the undesirable results at the problem location as a starting
point, fix up the offending vertices and reinsert this into the
abstract space as a new example.
In the second method, the designer can modify the ab-

Figure 5: Pseudo-examples (the upper right and left cor-
ner forms) can reparameterize the space, fixing up problem
regions.

stract space using the current set of examples by moving
the locations of the examples in the space. The cardinal
bases must then be resolved for, but this is fast enough to
be done interactively as the examples are moved.
The above method, however, may not be desirable since

the examples were typically placed at specific locations with
a conceptual purpose and the artist may not want to move
them. A third approach is to leave the original example
in place. Instead, one can first selects an acceptable inter-
polated form from a location in the abstract space near a
problem region (call this position p). Next, move this form
to a new location (p̃) in the problem region. The relocated
form will be treated as if it were a new example, however as
discussed below the computational and storage complexity
is less. We call this relocated form a pseudo-example.
The pseudo-example is not a “true” example as it is a lin-

ear sum of other examples. However, it acts like an example
in terms of changing the shape of the radial basis functions.
In essence this method reparameterizes the abstract space.
Reparameterization is very effective in producing shapes of
linked figures, as we demonstrate later with a human arm
shape. Figure 5 shows this technique applied to the 2D space
of 3D forms. The space has been reparameterized with two
pseudo-examples shown with a grainy texture (red on color
plate). Arrows indicate the locations from which the pseudo-
examples were drawn.
Creating the reparameterized shape proceeds much as be-

fore. We need to introduce some new notation before we
can formalize the reparameterization approach. We have al-
ready mentioned p̃, the new location of the pseudo-examples.
p̃ also includes the real example locations during reparame-
terization. We, furthermore, use a tilde to denote the new
radial basis weights, r̃, the new linear coefficients ã, and the
new cardinal bases w̃. We also denote the total number of
real and pseudo-examples as Ñ .



As before, the form at any point in the abstract space is:

xj(p) =
N∑

i1=1

w̃i1(p)xi1j (5)

Note that the interpolated form still only includes a sum
over the real examples. In other words, there are still only
N cardinal bases after the reparameterization. The pseudo-
examples reshape these N bases from w to w̃.

w̃i1(p) =
Ñ∑

i2=1

r̃i2i1Ri2(p) +
D∑

l=0

ãi1lAl(p) (6)

Also as before
p̃hã = F̃

However, F̃ is no longer an identity matrix. It now has Ñ
rows and N columns. Assuming the new pseudo-examples
are all located at the bottom of the matrix, the top NxN
square is still an identity. The lower Ñ − N rows are the
values of the original cardinal bases w at the location where
the pseudo-examples were taken from (see Equation 6). That
is, in each row, the Fit matrix contains the desired values
of the N cardinal bases, now at Ñ locations. These are 1
or 0 for the real example locations and the original cardinal
weights for the pseudo-examples, in other words, the weights
at the locations from which the pseudo-examples were drawn.
The radial portion of the cardinal basis construction pro-

ceeds similarly. The residuals are now

q̃i1i2 = F̃i1i2 −
D∑

l=0

ãi2lAl(pi1)

Note that instead of the Kronecker delta we now have the
values from F̃ .
The coefficients, r̃i2i1 , are now found by solving the matrix

system,
Qr̃ = q̃

As before, Qi1i2 has terms equal to Ri2(p̃i1), however, these
terms now include the new pseudo-example locations. As
a consequence, the radii of the radial basis functions may
change.

5 Shapes and Skeletons

Animated characters are often represented as an articulated
skeleton of links connected by joints. Geometry is associated
with each link and moves with the link as the joints are
rotated.
If the geometry associated with the links is represented

simply as individual rigid bodies, these parts of the character
will separate and interpenetrate when a joint is rotated. A
standard way to create a continuous skinned model is to
smoothly blend the joint transforms associated with each
link of the character, in other words, vertices near a joint will
respond to a blend of the transforms associated with both
links on either side of the joint. This is supported in current
graphics hardware, making it an attractive technique.
Unfortunately, transform blending exhibits some prob-

lems. These problems were recognized by Lewis et al. [7]
who present results similar to those presented here. As noted
earlier, in contrast to Lewis et al. our solution allows inter-
active editing of the abstract space due to the single weight
per example formulation with no loss of authoring flexibility.

Figure 6: Simple transformation blending exhibits shrinking
about joints.

This also provides real-time interaction since it can leverage
the transform blending in graphics hardware.
We use an arm bending at the elbow to first discuss the

problems associated with naive transform blending and then
to demonstrate how we can overcome these difficulties in the
context of shape blending. To perform the simple transform
blending, a blending weight α is assigned to each vertex.
For instance, in an elbow bend, vertices sufficiently below
the elbow would have weight α = 1, and those sufficiently
above, α = 0. Those vertices near the elbow would have α
values between 0 and 1.
We denote the transformation matrix for the upper arm as

T0, and the transformation for the lower arm as T1. We use
superscripts to denote the amount of rotation of the joint.
Thus, as the elbow rotates, we say that T1 changes from
T 0

1 when the elbow is straight to T 1
1 at a bent position. In

between the transform is T β
1 for a bending amount β. We

refer to the position of the arm when T1 = T 0
1 as the rest

position.
We denote the position of a vertex as x0 when the trans-

formation of the joint is T 0
1 . The simple transform blending

is defined as
x = αT β

1 x0 + (1− α)T0x0

where α is the blending weight assigned to that vertex. Un-
fortunately, linearly summed transformation matrices do not
behave as one would like. The result is that the skin ap-
pears to shrink near the rotating joint (see Figure 6). In
addition, simple transform blending does not provide a rich
set of tools for creating effects such as a muscle bulging as
the elbow bends.
We can solve both problems with shape blending. To do

this, the designer first creates examples of a straight arm,
Xβ=0, and a bent arm, Xβ=1, for, say, a 90 degree bend
(Figure 7). The bent arm includes any muscle bulging or



Figure 7: Example forms are warped into a canonical pose.

other deformations the designer wants to include. We ob-
viously cannot simply perform a direct geometric blend be-
tween these forms. At 45 degrees the lower arm would have
shrunk considerably, since the chord from the fingertip of the
bent arm to the fingertip of the straight arm passes nearer
to the elbow than an arc would.
Instead, what we would like is a combination of shape

blending and transform blending. We will do this by first
“unbending” the bent arm into the rest position in such a
way that when it is passes through the transform blending
it will exactly match the bent arm originally specified by the
designer. These produce the strange forms seen in Figure 7.
To perform the interpolation, these unbent forms are first
blended as usual, this new interpolated form is then sent
through the blended transform.
More formally, we call the vertex on the bent arm, corre-

sponding to x0 on the arm in the rest position, x1. As in the
simple blended transforms, we also have a blending weight,
α, associated with each vertex. We now seek a second arm
in the rest position with a corresponding vertex, x1

0, such
that when subjected to the simple transform blending at an
angle of β = 1 it will exactly match the bent arm specified
by the designer. Thus

x1 = αT β=1
1 x1

0 + (1− α)T0x
1
0

Now we can solve for the vertices of this new arm in the rest
position (see Figure 7)

x1
0 = (αT β=1

1 + (1− α)T0)−1x1 (7)

Finally, we perform a geometric blend of the new arm in
the rest position with the original arm in the rest position
and then transform it. The result is

xβ = (αT β
1 + (1− α)T0)(βx1

0 + (1− β)x0) (8)

This geometric blend followed by the blended transform will
match the original arm geometry when β = 0 and will match
the bent arm created by the designer when β = 1.

Figure 8: Naive transform blending vs. interpolated blend-
ing.

The arm model discussed above contains only two example
forms, the arm in the rest position and the bent arm. But
we can now use all the machinery of the previous sections
to perform a multi-way blend of the articulated geometry.
First, all example forms are untransformed to the rest posi-
tion via Equation 7. Then the multi-way shape blending is
applied to the untransformed forms. Finally, the blending
result is transformed in the normal way. In other words,
the interpolation of the forms in the rest position simply
replaces the latter half of Equation 8. Figure 8 shows the
straight arm example one of 6 examples in this shape. The
results above the straight arm are the result of naively blend-
ing transforms on this one example. On the bottom right is
a blend of the 6 examples untransformed to the rest posi-
tion. Finally, this strange blended form is pushed through
the blended transformation to the give the result shown in
the upper right.

6 Results

We have applied the paradigm described above to simple
shapes, linked figures, and to human face models. All per-
formance statistics measure raw interpolation speeds and do
not include time to render. All timings were gathered on a
450 Mhz Pentium-II machine.

6.1 Simple Shapes

The shape demonstrated in Figure 5 includes 5 example
forms each consisting of 642 vertices (1926 DOFs) and 1280
faces. One step of Loop subdivision [9] is applied to this
mesh and the limit positions and normals are computed.
This results in a mesh with 2562 vertices (7686 DOFs) and
5120 faces that is rendered at runtime. A two dimensional
abstract space was created with the horizontal axis being
“bend” and the vertical being “thickness.” The initial space
had regions in the upper right and left corners where the
blended surface was interpenetrating - the space was repa-
rameterized by adding pseudo-examples near these locations
that were not interpenetrating. Blending in this space can
be done at 5500 frames per second (fps). If real examples
had been added instead of pseudo-examples, the blending
slows down to around 4000 fps.
The abstract space can also be modified at runtime by

moving the examples and/or creating pseudo-examples. This



Figure 9: This figure shows 4 example arms (darker),
one pseudo-exmaple (grainy), and five interpolated arms
(lighter). Two axes of the abstract space shown are gen-
der in the vertical dimension and elbow bend horizontally.
Note that the arm can bend more and become more muscu-
lar than any example through extrapolation.

requires that the shape be resolved for new basis function
coefficients. The formulation presented in this paper allows
this step to be done within the interactive loop. The solver
plus interpolation still maintains more than 30 frames per
second.

6.2 Arm

The arm was created by modifying Viewpoint models inside
3D-Studio/Max. The arm example has an underlying skele-
ton that has 3 rotational degrees of freedom - one for the
shoulder, elbow and wrist. We have a fourth variable for the
parameterized arm, gender. The abstract space has 8 real ex-
amples (straight arm, shoulder up, shoulder down and elbow
bent for male and female models) and 6 pseudo-examples
which are mostly placed to smooth out bulges where the
shrinking from blended transforms was being overcompen-
sated for. These examples have 1335 vertices (4005 DOF)
and 2608 faces each. This dataset can be interpolated at
2074 fps. As with the simple blob shape, the arm’s abstract
space can be constructed and reparameterized within the
interactive loop within a frame time.
Figure 9 is a visualization of a 2D slice of the 4D abstract

space space of arms with 4 real examples, 1 pseudo-example.
Elbow bend is parameterized along the horizontal axis and
gender along the vertical. Extrapolation produces arms that
are more bent and more muscular than any of the examples.

Figure 10: Both geometry and texture are interpolated sep-
arately to create an infinite variety of faces at runtime. The
figure shows 8 examples plus the interpolated result. The
crosshair centered outside the head indicates the position in
the abstract space at which the texture is interpolated. The
crosshair centered on the head indicates the interpolated face
and also the position for the geometry interpolation.

6.3 Faces

We also applied the shape interpolation to human face mod-
els. The face model is constructed by modifying a generic
face mesh by linear combinations of “metrics” represented as
vertex offsets. Some metrics change the overall form while
others adjust more local details such as the shape of the nose
and/or mouth. Taken together, they can generate a very
wide range of human facial forms. These forms can then be
animated to blink, smile, talk, etc. The resulting face forms
are texture mapped to create further differentiation.
Figure 10 shows a set of example face models positioned

in a 3D abstract space. An interpolation can be carried out
independently on the geometry of the faces and/or on the
textures associated with them. The interpolated face shape
can also be animated at the same time while maintaining
frame rates. Thus from a few example faces, an application
could generate an infinite variety of faces at runtime.

7 Conclusions

Shape interpolation has been shown to be an effective and
highly efficient way of altering shape for real-time applica-
tions such as computer games. The front-end solution pro-
cess is also efficient, (a fraction of a second), so a tight cou-
pling between artist, solver, and interpolator provides a new
way for an artist to work without fundamentally altering
their workflow. With our system, artists can more easily
extend their work into the interactive domain.
In the context of skeleton based figures, we are able to

combine both shape blending with blended transforms to
create a smoothly skinned character. We overcome the lim-
itations of blended transforms, while including the artist’s



input for how muscles deform as the skeleton moves, and
still maintain interactive performance.
We intend to continue enhancing this work. In order to

improve our design cycle time, we intend to incorporate the
system into a commercial 3D package. While our processor
requirements are low, improving efficiency is still a key goal.
We would like to be able to control many realistic characters
at once with very small processor budgets – on the order of
one or two percent of the processor budget. Memory usage
patterns and usage of SIMD floating point hardware such as
found on the Katmai (Pentium-III) chip will be explored.
Shape interpolation poses some interesting problems for

level of detail. Simplification hierarchies can be constructed
to optimize for quality in the presence of changing pose and
shape. We intend to explore this facet as it is particularly
important for handling large numbers of characters such as
in a crowd scene.

References
[1] Arad, N., Dyn, N., Reisfeld, D., and Yeshurun, Y. Image warp-
ing by radial basis functions: Applications to facial expressions.
Computer Vision, Graphics, and Image Processing 56, 2 (Mar.
1994), 161–172.

[2] Cohen-Or, D., Solomovici, A., and Levin, D. Three-dimensional
distance field metamorphosis. ACM Transactions on Graphics
17, 2 (April 1998), 116–141. ISSN 0730-0301.

[3] Kent, J. R., Carlson, W. E., and Parent, R. E. Shape transfor-
mation for polyhedral objects. Computer Graphics 26, 2 (July
1992), 47–54. Proceedings of SIGGRAPH 1992.

[4] Lee, A. W. F., Dobkin, D., Sweldens, W., and Schröder, P.
Multiresolution mesh morphing. In Computer Graphics (Aug.
1999), pp. 343–350. Proceedings of SIGGRAPH 1999.

[5] Lee, S., Wolberg, G., and Shin, S. Y. Polymorph: Morphing
among multiple images. IEEE Computer Graphics and Appli-
cations 18, 1 (Jan. 1998), 60–73.

[6] Lerios, A., Garfinkle, C. D., and Levoy, M. Feature-based
volume metamorphosis. In Computer Graphics (Aug. 1995),
pp. 449–456. Proceedings of SIGGRAPH 1995.

[7] Lewis, J. P., Cordner, M., and Fong, N. Pose space deformation:
A unified approach to shape interpolation and skeleton-driven
deformation. In Computer Graphics (July 2000). Proceedings
of SIGGRAPH 2000.

[8] Librande, S. E. Example-based character drawing. Master’s
thesis, MIT, Cambridge, MA, 1992.

[9] Loop, C. Smooth subdivision surfaces based on triangles. Mas-
ter’s thesis, University of Utah, Salt Lake City, UT, 1987.

[10] Micchelli, C. A. Interpolation of scattered data: Distance ma-
trices and conditionally positive definite functions. Constructive
Approximation 2 (1986).

[11] Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L., and Zhu,
S. Accessible animation and customizable graphics via simpli-
cial configuration modeling. In Computer Graphics (July 2000),
pp. 403–410. Proceedings of SIGGRAPH 2000.

[12] Powell, M. J. D. Radial basis functions for multivariable in-
terpolation: A review. In Algorithms for Approximation, J. C.
Mason and M. G. Cox, Eds. Oxford University Press, Oxford,
UK, 1987, pp. 143–167.

[13] Rademacher, P. View-dependent geometry. Proceedings of SIG-
GRAPH 99 (August 1999), 439–446. ISBN 0-20148-560-5. Held
in Los Angeles, California.

[14] Rose, C. F., Cohen, M. F., and Bodenheimer, B. Verbs and ad-
verbs: Multidimensional motion interpolation. IEEE Computer
Graphics and Applications 18, 5 (Sept. 1998), 32–40.

[15] Rossignac, J., and Kaul, A. Agrels and bips: Metamorphosis as
a bezier curve in the space of polyhedra. In Computer Graphics
Forum: The International Journal of the Eurographics Asso-
ciation (Sept. 1994), pp. 179–184. Proceedings of Eurographics
1994.

[16] Ruprecht, R., and Müller, H. Image warping with scattered
data interpolation. IEEE Computer Graphics And Applications
15, 2 (Mar. 1995), 37–43.

[17] Turk, G., and O’Brien, J. F. Shape transformation using vari-
ational implicit functions. In Computer Graphics (Aug. 1999),
pp. 335–342. Proceedings of SIGGRAPH 1999.


