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Abstract
One of the most common tasks in computer animation is inverse-kinematics, or determining a joint configuration
required to place a particular part of an articulated character at a particular location in global space. Inverse-
kinematics is required at design-time to assist artists using commercial 3D animation packages, for motion capture
analysis, and for run-time applications such as games.

We present an efficient inverse-kinematics methodology based on the interpolation of example motions and
positions. The technique is demonstrated on a number of inverse-kinematics positioning tasks for a human figure.
In addition to simple positioning tasks, the method provides complete motion sequences that satisfy an inverse-
kinematic goal. The interpolation at the heart of the algorithm allows an artist’s influence to play a major role
in ensuring that the system always generates plausible results. Due to the lightweight nature of the algorithm,
we can position a character at extremely high frame rates, making the technique useful for time-critical run-time
applications such as games.

1. Overview

A talented animator can create believable characters that
spark a desired response in an audience. Believable char-
acters, a story, and a setting can transport a viewer for a time
to another world. Animators, together with modelers, editors,
sound engineers, and others can through tens of thousands of
hours of human labor create theatrical masterpieces as seen in
film. While these endeavors may produce the highest quality
animation, current techniques are costly and are not appro-
priate for many problems.

Interactive (unscripted) animation must adapt and change
as needed to create a unique run-time experience each time
such a system is executed. The most commercially suc-
cessful interactive animation experiences are found in com-
puter games, such as in Microsoft’s Asheron’s Call or Mech-
Warrior. Avatar-mediated virtual conferencing, 3D chat, and
other virtual reality applications also require interactive ani-
mation.

In this paper we focus on providing tools to solve the
inverse-kinematics (IK) problem. Inverse-kinematics gener-
ally refers to positioning an end effector such as a hand or foot
to some goal location. IK is needed for crucial tasks. When

a character needs to lift, touch, or otherwise manipulate a
virtual object, inverse-kinematics is required. The reason IK
problems are interesting and difficult is that there are, in gen-
eral, an infinite number of ways one can position the joint
angles of a complex figure such as a human to place the hand
in some location. Finding a configuration that solves the IK
problem and also looks “natural” remains an open research
problem. Additionally, most applications do not require sim-
ply a static position of the character to place the hand in some
location, but in fact a complete sequence to move the char-
acter to and from such a static position. We examine both the
static and dynamic needs for inverse-kinematics. Finally, we
wish to place much of the decision of what looks “natural”
to the artist.

Artist-centered interactive animation techniques have been
an important topic of recent research. Bringing the artist back
into focus is due to a realization that an artist’s talent is hard to
surpass and that artist supplied source material can be molded
and changed as needed while respecting much of the origi-
nal aesthetic. Research programs that seek to supplant, rather
than support, the artist deny themselves a powerful ally. Fur-
thermore, methods that leverage the artist’s talent fit more eas-
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ily into existing production pipelines, making that research
more relevant in the near-term.

Figure 1: Emotional control with the Verbs & Adverbs sys-
tem. Examples are surrounded by a box. There are an infinite
number of interpolated motions between and around these
examples.
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Figure 2: An early reach from the Verbs & Adverbs system.
Errors were often introduced with raw RBF interpolation,
so the end-effector often strayed from its desired location.
Highlighted characters show example poses and the others
are a sampling of interpolated motions.

The “Verbs & Adverbs” system 14, presented an efficient
technique to control animation through interpolation using a
combination of linear functions augmented with non-linear

radial basis functions. The primary focus of that work was
emotion control, such as varying a walk cycle from sad to
happy (see Figure 1). One of the other verbs shown was a
reach, indicating that inverse-kinematic control was possi-
ble, as shown in Figure 2. This paper expands upon that work,
presenting a number of IK tasks solved through interpolation.
The results are quantified and improved through a number of
mathematical enhancements over the initial “Verbs & Ad-
verbs” work, including use of a cardinal basis and automated
methods for improving the accuracy of the inverse-kinematic
tasks.

We present two major enhancements to the “Verbs & Ad-
verbs” system. First, we replace the interpolation per degree-
of-freedom (DOF) with an interpolation per example by using
cardinal basis functions.The resulting animation is equivalent
but the use of the cardinal basis greatly reduces the number
of interpolations that need to be performed, greatly increas-
ing the efficiency of the system at design time and modestly
increasing its runtime efficiency. Secondly, we show how the
non-linearities in example-based IK solutions can be auto-
matically corrected by insertion of pseudo-examples derived
directly from the initial interpolation space designed by the
artist. The resulting interpolation-based animation is highly
efficient, running at many thousands of frames per second.

The remainder of the paper will progress as follows. After
a brief synopsis of related work, the construction of verbs
will be covered in Section 3. This section will also detail the
new cardinal basis construction and how it differs from the
initial work in 14. Section 4 will discuss the specifics of the
inverse kinematics problem and how automatically generated
pseudo-examples provide accurate and efficient results. Some
results and conclusions will follow.

The video figures referenced in this paper can be
found with the accompanying conference materials and
can also be found online in compressed form at
http://research.microsoft.com/graphics/hfap/RBFIKVid.zip.

2. Related work

Inverse-kinematics is one of the oldest problems in computer
animation, tracing its origins back to the problem of position-
ing industrial robots. Positioning a character with rotational
degrees of freedom is non-linear, but for small changes of an
articulated figure’s DOFs (i.e., the starting configuration is
near the desired one), it is sufficiently smooth to enable an
iterative linear IK solver. Girard and Maciejewski overview
this technique in 5.

For complex motions, however, simple IK will often prove
insufficient. Zhao and Badler 21 introduced a robust IK so-
lution based on non-linear optimization. Rose, et al. 15 ex-
panded this formulation to perform IK over entire motion
sequences, mostly to enforce IK constraints during motion
transitions. Non-linear IK is a powerful enough technique
for complex motion capture analysis in the presence of noisy
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data, as shown by Bodenheimer, et al. 3. Unfortunately, it suf-
fers from being computationally expensive and by having a
run-time that is highly dependent on the difficulty of the task
and the quality of the initial guess. For real-time applications,
this unpredictability reduces the technique’s attractiveness.

Motion retargetting 6 makes great use of IK over sequences
of motions to adapt motions from one character to another
with great success. Gleicher makes use of a much faster se-
quential quadratic programming approach. While it behaves
less reliably than the method of 21, it is much faster and can
be used when the initial guesses are sufficiently good.

Both these techniques make little use of the large body of
human biomechanics knowledge. Synergy-based IK 7 uses a
measure of how much a particular joint contributes to a given
IK task (the synergy), in order to reduce the dimensionality
of the problem and to help ensure that the results are human-
like.

Rather than relying on complex models for how creatures
move, our methodology primarily takes advantage of exist-
ing motion data and interpolates these to create new motions
that solve the given IK constraint. A considerable amount of
work has been undertaken with respect to editing existing
animations and blending between two segments 15, 6, 9.

Methods that have addressed modifying existing animation
include Fourier techniques as used in 19 to modify periodic
motions. Amaya, et al. 1 used information from one motion to
modify the emotional content of another, primarily through
changes in timing and intensity of motion. This technique
also worked exclusively for periodic motions.

Bruderlin and Williams 4 use multi-target interpolation
with dynamic time-warping to blend between motions. Linear
interpolation over a set of example motions is used by Wiley
and Hahn 20 and Guo and Robergé 8. Both these techniques
use O(2D) examples (where D represents the dimension of
the space) and fail to address the usefulness of examples with
a limited region of influence. Our work is most similar to 20

but has distinct advantages. That work used a dense sampling
of the parameter space, so O(2D) actually understates their
example requirements. While their runtime is efficient since
multi-target linear interpolation over a regular grid is straight-
forward, their memory requirements make their technique
unattractive for most real-world applications. In contrast, we
use far fewer examples.

“Verbs & Adverbs” 14 presented an interpolated anima-
tion technique requiring a minimum of O(D) examples and
which also allowed for local refinement of the interpolation
space. These results were applied to shape interpolation in 17

with the key mathematical improvement being the use of car-
dinal basis functions. We further extend this work by bringing
it into the animation domain, and in particular show how to
apply this technique to inverse-kinematic problems. The ef-
ficiency of this interpolation is such that it can be reasonably
used to control a large cast of characters acting simultane-

ously in conjunction with a high-level control mechanism
such as in Musse, et al.11.

3. Verbs & Adverbs

Design Examples

External tools:
Animation package, e.g. Maya
Motion capture system

Annotation:
Define abstract space
Position examples in abstract space
Keytime information

Abstract space
Annotated example motions

Verb Generation

Target Application
Position in 
abstract space

Verb runtime system

Interpolated motion

Figure 3: Key parts of the Verbs & Adverbs system.

The Verbs & Adverbs system is divided into three main
parts, as is shown in Figure 3. Those areas shown in gray
are the key elements of the Verbs & Adverbs system. The
others represent external programs to prepare data for the
system and the target application (e.g., the game) itself. Con-
structing verbs begins with designing example motions with
an external animation system or a motion capture system.
The example motions define the scope of variation that the
interpolator can produce.

As detailed in 14 before a raw animation can be used as an
example, it must be annotated with some auxiliary informa-
tion. For animation blending, keytime and adverb informa-
tion are both required. In short, keytimes, help to time-warp
example motions so blending can occur between correspond-
ing poses. Full details about the benefits of time-warping can
be found in 14, 13, 4.

Adverbs, the other key annotation, are simply the differ-
ent control axes for the motion. In 14 typical adverbs en-
coded non-kinematic values like a measure of the character’s
perceived happiness. This paper concentrates on kinematic
goals, thus the adverbs represent quantities such as the x-,
y-, z-goals for an end-effector, or surface-slope to position a
foot. The set of adverbs for a given verb define an abstract-
space of all possible motions that can be formed by the verb
runtime system by adjusting the adverb values. For immea-
surable quantities like happiness, the judgment of the verb
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Object Variable Subscript Range

Example X i 1..N

DOF x i 1..N

j 1..M

Point in Adverb Space p i

Radial basis R i

Radial Coefficient r i,j

Linear Basis A l 0..D

Linear Coefficient a i, l

Distance d i

Keytime K m 1..NumKeys

Table 1: Terminology

designer was used to set the adverb values. For the IK mo-
tions discussed here, the adverbs can be set automatically.

Once verbs are designed, they are available to an interactive
application. The application chooses at each instant, desired
values for the adverbs, thus selecting a specific location in
the abstract space. If a character were to track a moving ball
with their hand, for instance, the adverbs might be the x-, y-,
and z-offsets from the root of the character to the position of
the ball. The verb runtime system handles this request very
efficiently, enabling the Verbs & Adverbs system to be used
in time-critical applications such as a game.

The number of adverbs defines the dimension of the ab-
stract space, which we denote with D. We denote the number
of examples included in the construction of a verb by N . Each
example motion in a verb is required to have the same overall
structure. That implies that each verb must include the same
number of curves that define the trajectory of the character’s
joints. Use of a cardinal basis in this paper frees us from the
further restriction in 14 that all curves have the same num-
ber of control points and same curve encoding scheme. All
example motions in a particular verb must also represent the
same basic motion. A set of example reaches, for instance,
must all use the same arm to perform the reach. In terms of
the keytimes mentioned earlier, each example must have the
same number of keytimes in the same order, though the rel-
ative timing of the keytimes and the overall duration of each
example may be different.

Our method uses a number of subscripts and symbols.
Please refer to Table 1 for a complete list of these symbols
and their meanings. We denote an example as Xi, where

Xi =
{
xij ,pi,Km

}
(1)

where i is fixed for a particular example xi, j ranges from

1..M , the number of DOFs in the system, and m ranges from
0..NumKeys.

Each xij , the jth DOF for the ith example represents a
DOF curve represented in some fashion such as a B-spline,
Fourier decomposition, etc. K is the set of keytimes that de-
scribe the phrasing (relative timing of structural elements) of
the example. Based on the keytime annotation for each ex-
ample, the curves are all time-warped into a common time
frame. Keytimes are, in essence, additional DOFs and are in-
terpolated at runtime to undo the time-warp. See 14 for details
on the use of keytimes.

3.1. Verb generation

Given a set of examples, a continuous interpolation over the
abstract space is generated for the verb. The goal is to pro-
duce at any p in the abstract space, a new motion X(p) de-
rived through interpolation of the example motions.When p is
equal to the position pi for a particular example i, then X(p)
should equal Xi. In between the examples, smooth intuitive
changes should take place. This is the classic multivariate
interpolation problem.

In 14, each B-spline coefficient was treated as a separate
interpolation problem. The reach verb from Figure 2, for in-
stance, had approximately 1200 separate sub-problems. This
leads to inefficiencies in both the offline and run-time stages.
Sloan 17 introduced the cardinal basis, where one interpola-
tion is formed for each example. This function determines the
weight given to that particular example over the entire space
and is defined to have a value of 1 at the example location
and 0 at the locations of all the other examples. Given this,
it is clear that this will form an exact interpolation. For each
DOF, the bases are simply scaled by the example DOF values
and then summed. This approach is not only equivalent to 14,
but is more efficient both at design time and runtime and also
decouples the DOF representation for the examples from the
interpolation scheme. Before this, each example had to have
DOFs of equivalent structure, i.e. same curve types and same
number of coefficients.

The shape of the individual cardinal basis function is some-
thing we can select. Our problem is essentially one of scat-
tered data interpolation, as we have example motions, in
a relatively high-dimensional space. Most published scat-
tered data interpolation methods focus on one- and two-
dimensional problems. For these, relatively simple schemes
can be used, but these often do not scale well in high-
dimensions. Linear interpolation using Delauney triangula-
tion, for instance, does not scale well in high dimensions.
Based on our need to work in high dimensions with sparse
samples, we adopt a combination of radial basis functions
and low order (linear) polynomials.

The cardinal basis weighting functions we use are defined
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as

wi1(p) =
N∑

i2=1

ri2,i1Ri2(p)+
D∑

l=0

ai1,lAl(p) (2)

where the ri2,i1 and Ri2 are the radial basis function weights
and radial basis functions themselves and ai1,l and Al are the
linear coefficients and linear bases. The subscripts i1 and i2
both indicate example indices.

Given these bases, the value of each DOF is computed at
runtime based on the momentary location, p, in the abstract
space. The value for each DOF, xj , at location p is defined
as

xj(p) =
N∑

i1=1

wi1(p)xi1,j (3)

The linear function provides an overall approximation to
the space defined by the examples and permits extrapolation
outside the convex hull of the locations of the examples. The
radial bases locally adjust the solution to exactly interpolate
the examples. We discuss the linear approximation and radial
bases in the following two sub-sections.

3.1.1. Linear approximation

The first step to forming our interpolation is, for each example
i, to fit (in a least squared sense) a hyperplane to the values
1 at the location of the ith example location, and 0 at all
other example locations.This definesN separate least squares
problems of the form

pha = F (4)

where ph is a matrix of homogeneous points in the abstract
space (i.e., each row is a point location followed by a 1),
a are the unknown linear coefficients, and F is a Fit matrix
expressing the values we would like the linear approximation
to fit. In this case F is simply the identity matrix since we are
constructing a cardinal basis.

Figure 4 shows the linear approximation and the three
radial basis functions associated with the first of three ex-
amples for a simple one-dimensional abstract space The
three examples are located at p = 0.15,0.30,0.75. The
straight line labeled A1 is the line that fits best through
(0.15,1),(0.3,0),(0.75,0). In the one dimensional problem,
a best fit line for any particular DOF could then be evaluated
by simply scaling the individual lines associated with each
example by the DOF values and summing.

While we have chosen to use a linear approximation, other
choices could certainly be made. When a particular motion
has an understood underlying structure which can be well
approximated by a fixed-order polynomial, then the linear
approximation step should be replaced with a step based on
that particular polynomial.

Figure 4: Linear and radial parts of the cardinal basis func-
tion for the first example

3.1.2. Radial basis

Radial basis interpolation is discussed in Micchelli 10 and by
Powell 12. Radial basis functions have been used in computer
graphics for image warping by Ruprecht and Müller 16, Arad
et al. 2, for 3D interpolation by Turk et al. 18, and for skinned
shape interpolation by Sloan et al. 17.

Since the linear approximations cannot, in general, fully
define a cardinal basis by passing through the values 1 and 0,
there still remain residuals between the example values xij

and the scaled and summed hyperplanes. Rather than cast our
interpolations over DOFs, we continue to create the cardinal
bases. The residuals in the cardinal bases are given by

qi1,i2 = δi1,i2 −
D∑

l=0

ai2,lAl(pi1)

In the one dimesional problem illustrated in Figure 4, these
are just the distances from the line to the desired values of 1,
0, and 0 at p1, p2, and p3.

To account for these residuals, we associate N radial basis
functions with each example. Since there are N examples, we
need N2 radial basis functions. We solve for the weights of
each radial basis, ri2,i1 , to account for the residuals such that
when the weighted radial bases are summed with the linear
approximation, they complete the cardinal bases.

This leaves us with the problem of choosing the specific
shape of the radial bases and determining the radial coeffi-
cients. Radial basis functions have the form:

Ri (di(p))

where Ri is the radial basis associated with Xi and di(p)
is a measure of the distance between p and pi, most often
the Euclidean norm ‖p−pi‖. There are a number of choices
for this basis. As reported in 17, we found using a basis with
a cross section of a cubic B-spline a good choice. Amongst
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Figure 5: Cardinal basis functions and scaled sum for a par-
ticular DOF.

other properties, its compact support makes it attractive so as
to allow for local refinement of the adverb space.

The radial basis weights, ri2,i1 can now be found by solv-
ing the matrix system,

Qr = q

where r is an N by N matrix of the unknown radial ba-
sis weights and Q is defined by the radial bases such that
Qi1,i2 = Ri2 (pi1), the value of the unscaled radial basis
function centered on example i2 at the location of example
i1. The diagonal terms are all 2/3 since this is the value of
the generic B-spline at its center. Many of the off-diagonal
terms are zero since the B-spline cross-section drops to zero
at twice the distance to the nearest other example.

Referring back to Figure 4, we see three radial basis func-
tions associated with the first of the three examples. If these
three are summed with the linear approximation, we get the
first cardinal basis, the line labeled w1 in Figure 5. Note that
it passes through 1 at the location of the first example and is 0
at the other example locations. The same is true for the other
two cardinal bases w2 and w3.

Given the solutions for the radial basis weights, we now
have all the values needed to evaluate Equations 2 and 3
at runtime. The upper line in Figure 5 is simply the three
cardinal bases scaled by the example values and summed as
in Equation 3.

4. Inverse-kinematic approximations

Our goal is highly efficient, highly accurate IK using blend-
ing. As discussed in Section 2, there are many ways to solve
the IK problem. IK that adheres to human-like motion is
a more constrained problem yet. Commercial systems use
biomechanical hints, or analytically solved sub-problems to
keep their IK subsystems on track. Biomechanical plausibil-
ity can be encoded into the objective function of 21, though

this will add further complexity to the nonlinear optimiza-
tion stage. None of these addresses more subtle concerns of
human figure animation, such as making the character reach
for something in a particular way, such as lifting a light vs.
heavy object. Animation blending provides a solution to all
these problems. The animator or motion capture artist can
spice the IK with hard to quantify subtlety and ensure that
the motion looks realistic. Best of all, IK done using blending
runs very efficiently: at a little over 20,000 fps on a 733 MHz
PC.

A further benefit of using blending for IK is that the IK
process can then be used to create entire motions, rather than
just single poses. Some of the examples we present will be
for single poses, but others will be for entire motions such as
walk cycles over slopes, punching sequences, and reaching
heavy or light objects. While IK can be used to fix up existing
sequences, such as altering the location where a punch would
land, it requires that IK be done on many frames before and
after the punch hits the target since the IK change needs to
be both blended in from and blended back out to the initial
sequence 15.

The reaching motion, shown in Figure 2, demonstrated
that motion blending techniques can be applied to inverse-
kinematic problems as well as abstract spaces defined by
emotional qualities. Unlike emotion, inverse-kinematic po-
sitioning can be quantifiably verified.

Even given a completely accurate adverb-assignment for
a verb’s examples, in general, a linear continuous change
in the adverbs will not produce a similar linear change in
the resulting motion. This is due to the fact that both the
interpolation method and the underlying forward-kinematics
process are both non-linear. In general, the desired location
of a reach and the actual location will only match exactly at
the example locations.As reported in 13, the average, and max
sampled errors over the bounding volume were 3.12%, and
9.68% respectively. Correcting for this error is the topic of
this section.

4.1. Error of initial interpolation spaces

To illustrate the problem of 3D human figure IK, we will con-
sider the simpler problem of positioning the end-effector of
a 3-link arm embedded in the plane. Clearly, the 3-link arm
example has a much simpler closed form solution but allows
us to demonstrate the algorithm. Unlike the closed form so-
lution that can only handle up to 6 degrees-of-freedom, our
algorithms are useful for highly complex figures and yield
efficient runtime processing.

Given the goal of placing the end-effector at a point (x,y),
determine the DOF angles, (θ1,θ2,θ3) that will yield that
desired position. To use blending for IK, we need some ex-
ample poses to be blended. Since blending will not yield a
linear parameterization of the space, there will be a discrep-
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Figure 6: Regular sampling of the adverb space yields irreg-
ular results. Parameters (adverbs) sampled along the dashed
line yield results measured along the solid curve. Example
poses are superimposed on the image.

Figure 7: Sampling the board draw yields results away from
the plane of the examples.

ancy between the location in the IK abstract space, p and a
measured resulting position of the end effector xe(p).

Figure 6 shows the warped grid formed by regularly sam-
pling the verb defined by the examples and plotting the re-
sulting end-effector positions, xe(p). The warped grid has
an average and maximum error, ‖xe(p)− p‖ of 6.85% and
14.15%, respectively over the sampled locations. Video Fig-
ure 1 also shows this arm’s distorted adverb space.

A more interesting example shows the distorted grid in 3D
for a 2D drawing motion (Figure 7). In this verb, all example
poses were on the same plane in 3D, such as one would expect
when drawing on a whiteboard. This type of IK problem
would be equally relevant to positioning the character’s end-
effector on a 2-D manifold in 3-space, such as on the surface
of a ship’s hull 7.

Figure 8: A planar sampling of the adverb space for a 3D
reach verb yields a non-planar, non-regular measured result.

The least restricted problem is positioning the end effec-
tor in 3D, such as shown in Figure 8. This figure shows the
distorted results for samples taken on one plane in the ad-
verb space. A planar slice through the adverb space has no
guarantee to result in the end effector remaining in a plane.

4.2. Finding the optimal setting of p′

One thing to note about Figures 6, 7, and 8 is that the distor-
tions are for the most part smooth. Improving the IK results
can be done in one of two main ways: through modification
of the adverb space to reduce distortion of the mapping from
adverbs to resulting motion, or by on-the-fly modification
of the desired point to achieve the desired goal. With very
smooth distortions, this latter approach can provide a good
solution.

Consider the 2D 3-link arm. When a desired location p
is specified, the end-effector is measured at xe(p), yielding
an error vector of ve = xe(p)− p. Since the error function
is smooth, (i.e., locally approximately linear), the inverse of
the error vector should point towards a “better” point in the
adverb space in order to reach the desired goal. We can search
for a new point, p′ such that xe(p′) = p. We perform a line
search along the direction from p opposite the error vector.
Performing this line search improves the IK results markedly.
For the 3-link arm, average and maximum error were reduced
from (6.86%,14.125%) to (1.125%,4.725%) over the work-
ing volume of the verb. Figure 9 shows the less distorted
parameterization space.

Likewise, the board drawing and 3D reach were im-
proved from (8.11%,23.86%) to (3.9%,11.9%) in the case
of board drawing (Figure 10) and from (5.27%,8.98%) to
(1.03%,3.22%) for the 3D reach.
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Figure 9: Searching for optimal p’greatly improves the map-
ping from adverb to end effector location.

Figure 10: Searching for optimal p′ greatly improves the
mapping from adverb to end effector location.

The gradient decent line search can be iterated to increase
the accuracy albeit at a computational cost. Searching for a
new point in the adverb space to perform the blending fails
when the error function is not smooth. It also suffers from
being slow at runtime as it is an iterative solution. The inner
loop requires an evaluation of the character’s transformation
hierarchy, very similar to traditional IK. An alternative we
discuss next is to improve the abstract space itself.

4.3. Improving the abstract spaces

A second option, more costly at design-time, results in more
efficiency at run-time. Through the addition of new examples
or pseudo-examples 17, we can in essence “fix” the distor-
tion from the adverb space to end-effector. We describe an
automated process to improve the mapping from adverb to
end-effector. The basic algorithm is as follows:

While the adverb space exhibits too much distortion:

1. Find the worst p of the adverb space, i.e.,
maxp‖xe(p)−p‖.

2. Search to find the best p′ to minimize ‖xe(p′)−p‖.

3. Insert a pseudo-example at p drawn from the location p′.
In other words insert the pseudo-example x(p′) at p.

4. Solve for the wi of the new interpolation space.

A pseudo-example carries no additional DOF positioning
data, but is rather a weighted sum of the original examples as
defined by Equation 3. Thus solving for the basis functions
associated with a pseudo-example is slightly modified from
before. Instead of having values 1 at the example location and
0 at all other examples, the new basis is constrained to have
the values equivalent to the weights for each example found
at p′ before the new pseudo-example is inserted. See 17 for
details. After the insertion of the new pseudo-examples, the
new interpolation space is used as usual at runtime.

There is some flexibility in the last two steps of the al-
gorithm above. When inserting a new pseudo-example. One
could solve for new hyperplanes for each previous exam-
ple and pseudo-example, given the newly inserted pseudo-
example or simply keep the old ones. One could reset all
the radii of the radial basis functions given the new nearest
neighbors or keep the old one and only select a new radius
for the new pseudo-example. Essentially these are decisions
about how local or global the effect of the newly inserted
pseudo-example should be. We tried each of these and have
found keeping the effect of each new pseudo-example local
works best and is of course simpler to implement and com-
pute. One problem with each new pseudo-example having a
global effect is that parts of the abstract space that worked
well may get worse.

Thus, once a radius is established for an example or pseudo-
example it remains fixed. Additionally, the hyperplanes also
remain fixed for the original examples. Thus, as each new
pseudo-example is inserted we only solve for the radial basis
function weights needed to maintain interpolating cardinal
bases. As the algorithm progresses, new radii will be smaller
and smaller as finer and finer adjustments are made to the
space.

These methods have two potential downsides: potential
increases in memory footprint and decreases in run-time per-
formance. As detailed in 17, pseudo-examples are made up of
linear-combinations of real examples. As such, they add only
modest memory needs above those of the initial verb.

The execution time is O(Ne +Np) where Ne is the num-
ber of real examples and Np the number of pseudo-examples.
If Np grows large, it may prove too expensive at run-time. At
some point, it could cross over the cost of performing on-the-
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Figure 11: Simple addition of examples vs. hybrid approach
combining addition of pseudo-examples with optimal p′.

Figure 12: Auto-refinement improves the interpolation
spaces of the drawing. The left figure shows the pseudo-
example-only technique, the right the hybrid technique.

fly p optimization or traditional IK. A multiresolution RBF
with recursive clustering, however, can mitigate this as re-
ported in 13. The run-time performance of a multiresolution
RBF can be made to be O(logN).

What of the last few millimeters, however? The errors are
driven towards zero, but are not driven to zero. For many
applications, the level of accuracy will prove sufficient. For
others, however, it will not. Hybrid approaches can ensure the
final accuracy. One can use local search to find optimal p′,
though this is not guaranteed to have zero error. Traditional
IK can be employed, or a combination of all three techniques.
The verb will provide a very accurate initial guess, so the IK
solution will converge in a stable manner in few iterations.
Through use of the verb, traditional IK’s downsides are al-
leviated. Note that this would only need to be employed in
situations where extreme accuracy is required.

Figure 11 show the improvements of the space when the
two variant auto-refinement algorithms (pseudo-examples
only vs. hybrid pseudo-examples + optimal p′) are run our
our initial spaces. Figure 14 shows a plot of error improve-

Figure 13: Auto-refinement improves the interpolation
spaces of the reaching motion. Blue spheres show the original
examples and green the pseudo-examples.

ments vs. added pseudo-examples. You can see that the ini-
tial spaces are greatly improved by these methods. Average
error dropped from 6.85% to 2.39% for the pseudo-example-
only approach and from 1.13% to 0.4% for the hybrid ap-
proach. Video Figure 1 shows pseudo-example-only process
in motion for the 3-link arm. Likewise, Figures 12 and 14
show the improvements for the board drawing, improving
the average and maximum error to (0.25%,0.69%) in the
pseudo-example-only approach and (0.1%,0.48%) in the hy-
brid approach. Figures 13 and 14 shows the improvements
for the 3D reach, improving the average and maximum er-
ror to (0.51%,1.41%) in the pseudo-example-only approach
and (0.053%,0.96%) in the hybrid approach. Video Figure
2 shows a visualization of this improvement together with
animated results. Figure 19* shows the improved board and
reach plots in color, where color is used to show the rela-
tive quality of the various regions. The improved motions are
mostly green, the color used to indicated low-error.

5. Results

All the results described so far and shown below run at many
thousands of frames per second independent of rendering.
So far, we have covered reaching motions for simple manip-
ulators in the plane, human-like characters reaching to 2D
manifolds in 3-space, and also reaching unrestricted in 3-
space. There are many more types of IK motions achievable
with verbs, many of which have both IK and non-IK control
parameters.
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Figure 14: A plot of improvements with respect to number of
additional pseudo-examples for the 3-link, board, and reach.

5.1. Action motions

The punch verb was constructed from 6 animated sequences.
The height and direction of the character’s punch can be con-
trolled using this verb as seen in Video Figure 3. Likewise,
the kick verb (Figure 15 and Video Figure 5) provides control
over the kick’s strike point.

The lifting motion was constructed from 4 animated ex-
amples, close-light, close-heavy, far-light, and far-heavy. A
sampling of the lift is shown in Figure 16 and in Video Fig-
ure 4. This motion exhibits IK control combined with non-IK
control.

5.2. Locomotion cycles

Locomotion cycles are often the most important animation se-
quences to an application. Combining IK with other concerns,
such as a character’s health level, can bring these sequences

Figure 15: A kicking verb. Example motions are shown in
the center column.

Figure 16: The lifting motion combines IK control with visual
cues indicating the weight of the box / difficulty the character
has lifting it. Boxed poses are example poses.

to life. Figure 17 and Video Figure 6 show a Mechwarrior
“Shadowcat”, a character from a Microsoft produced game
title. These figures shows a sampling of single poses from a
sequence exhibiting control of walking slope and character
damage.

The jogging motion shown in Figure 18 was created from 3
jogging sequences motion captured with a magnetic motion
capture system. The control axis is turning radius and this
motion, combined with motion transitioning, can be used to
navigate a virtual character around a scene.
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Figure 17: Mechwarrior “Shadowcat” walk. Figures inside
boxes are examples, the others are sampled interpolated and
extrapolated motions.

Figure 18: Jogging motion using motion capture data. Ex-
ample motions are indicated with a white dot.

6. Conclusions

Interpolating motions has been proven to be an effective way
to combine inverse-kinematic control alongside less quan-
tifiable control axes such as perceived difficulty, health, etc.
Unlike biomechanically driven systems, example-based mo-
tion interpolation fits into existing production pipelines for
commercial animation houses due to its artist-centered focus.
Its runtime memory and performance characteristics make it
ideal for today’s interactive real-time application domain.
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Figure 19: This figure shows the 2- and 3-D improved
reaches. The parameterization exhibits a high degree of fi-
delity. Green areas have lowest error and red the highest.
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