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In the Siggraph 1996 paper, Efficient Generation of Motion Transitions Us-
ing Spacetime Constraints [3], we used the Balafoutis and Patel dynamics for-
mulation [1] together with the spacetime optimization animation technique [4]
to create high-quality transitions for a full-body human-figure model. Balafoutis
and Patel created the most efficient linear-recursive inverse dynamics method
currently known. In order to perform gradient-based optimization, such as with
BFGS [2], we derived the partials of their equations with respect to joint angle
position, velocity, and acceleration.

This technical report details the complete dynamics formulation used in [3],
including all the partial equations which could not appear in Siggraph due to
space limitations. This tech-report is intended as a companion to that paper.

1 Equations of dynamics & their derivatives

Constants, symbols, and notation:

0; = origin of the #th link coordinate frame.
c; = center of mass of the ¢th link.
w! = angular velocity of the -th link .
z: = joint axis of the i-thlink expressed in
the ¢-th coordinate frame.
sﬁ’j = vector from o; to o; expressed in the #th coordinate frame.
r; ; = vector from o; to c; expressed in the i-th coordinate frame.
A; = 3x3 coordinate (or 4x4 homogeneous) transformation relating
the #-th coordinate frame to the (i — 1)-th frame.
Icf = inertia tensor of the é-th link about c; expressed in the k-th

coordinate frame.

J Cf = FEuler’s inertia tensor of the i-th frame about c; expressed in the
k-th coordinate frame.
Q! = angular acceleration tensor of the i-th link expressed in the
i-th coordinate frame.
Fcﬁ = force vector acting on c; expressed in the #-th coordinate frame.
MCE = moment vector about c; expressed in the #-th coordinate frame.
f! = force vector exerted on link i by link (i — 1).
ni = moment vector exerted on link i by link (i — 1).
7, = torque at joint i.
g = gravity.
m; = mass of the #th link.

In the above, the subscript indicates the coordinate frame being represented
and superscript the coordinate frame in which it is represented.



We use 4+ and - on index variables to denote relative placement in the joint
hierarchy. Thus, i1 is the predecessor of i which is the predecessor of i+. For
example, in the equation wzi = Alawf + Z;qu_, the variable w} is the angular

velocity in the coordinate frame which precedes the coordinate frame of wﬁr In

other words, coordinate frame i is closer to the root coordinate frame than is
frame i+. Note that there is no guarantee of a uniquely defined successor.
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Inverse-dynamics equations:

Base conditions at the root of the creature:
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Recursive dynamics equations:
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Backward recursive equations (torque equations):

At a joint controlling an end-effector:
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The energy function & the partials:
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The recursive partials & their initial conditions:
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The backward-recursive partials:
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