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1 Introduction

The magic of computer graphics as seen in many current movies and computer
games comes at a cost. Creating the geometric forms with which to generate
synthetic characters and animating the characters to bring them to life requires
either highly skilled artists and/or sophisticated capture devices. Both are ex-
pensive and, in the case of highly skilled artists, rare. This paper discusses and
demonstrates a methodology to automatically create new shapes and anima-
tions from existing geometric forms and motions. Our approach differs from
previous work by allowing for extrapolation and interpolation between multiple
forms as well as motions. In addition, our methodology is efficient enough to be
used in an interactive runtime setting. The paradigm presented here is one of
design by example. New shapes and animations are created on the fly through
multi-way blending of examples.

At this time, a variety of 3D scanning methodologies are available that can
capture shapes that exist in the real world. Motion capture technologies are
also capable of recording complex performances. One drawback of these capture
systems is the cost that is incurred in their purchase and operation. Another
limitation of capture devices is that they are restricted to recording shapes and
motions that can be observed (e.g., no dinosaurs). In contrast to the scanning
devices, highly skilled artists have the advantage of being able to model complex
existing as well as imaginary shapes and animations.

Both of these means of creating shapes and animations are limited in the
same way. In particular, neither has a simple means of automatically modifying
the shapes and animations once they have been created. Automatically modify-
ing shapes and animations is desirable for two reasons. One, in scripted settings,
such as films, automatic modification makes it easier to avoid redundancy. For
instance, an entire colony of different looking ants could be automatically cre-
ated from a few distinct ants. In addition, the ants’ motion could automatically
adapt to changes in their mood or to the terrain they are walking on. Two, in
non-scripted interactive runtime settings, such as games, it is not possible to an-
ticipate all shapes and animations that will be needed when the game is played.
Thus, most games simply try to reuse the closest fitting model or motion for
the situation.

There are at least two solutions to the issues outlined above. One solution
consists of creating more shapes and animations. Unfortunately, this approach
would again be costly. Another solution is to try to leverage existing forms and
motions to automatically generate variations on the fly. The second approach
is the topic of the work presented here.

We will present a methodology for efficient runtime interpolation between
multiple forms or multiple motion segments. The forms and motions may have
been created by artists or through geometry or motion capture technologies.
Once our system is provided with example forms and motions, it can generate
a continuous range of forms we call a shape or a continuous range of motions
we call a verb. We also apply the shape blending methodology to articulated
figures to create smoothly skinned figures that deform in natural ways. The

1



runtime interpolation of the forms or motions runs fast enough to be used in
interactive applications such as games.

2 Related work

The idea of leveraging existing shapes and animations by modifying them is cer-
tainly not new. We begin with a discussion of the relevant morphing literature.
Morphing methods, initially applied to images [21] [2], have recently also been
applied to 3D geometry [22, 11, 6, 14, 10]. Much of the morphing methodology
concentrates either on establishing correspondences between models and/or is
limited to morphing between two models. An exception is the work on N-way
morphing in the case of images[13]. We assume that the correspondence prob-
lem has either been solved implicitly in the creation of the original forms or that
existing methods can be used to establish correspondences. We focus, instead,
on the problem of efficient blending between multiple examples.

Lee et al. [11] primarily focus on the correspondence problem and two-way
blending. Their approach could easily be extended to incorporate our blending
functions and morphs between multiple examples.

Turk and O’Brien [22] focus on shape transformation. While their method is
very flexible and can deal with N-way blends between shapes of arbitrary genus,
it is not interactive since it represents shapes as implicit functions in moderately
high dimensional spaces.

Rademacher’s study [18] is similar in spirit to the work presented here.
He parameterizes geometry based on view direction and always uses three-way
blends. He also applies his method to animated view-dependent geometry. Our
work uses the more general notion of an abstract space to parameterize the
object. In addition, we use scattered data interpolation, instead of simplex
decomposition, to do the blending. Our work also allows us to leverage the
underlying anatomical structure in skeleton based figures.

Blanz and Vetter [3] present a parametric model for a human face. While
they focus on representing rather than animating a face, they do discuss ex-
pressions in their section on future work. They project their examples into a
principal components basis to reduce the necessary number of examples and
have very impressive results.

The second area of research related to our work is animation. Parameterized
motion is typically generated in one of three ways: procedurally, dynamically,
or by interpolation. Recently, some efforts have focused on modifying control
functions for dynamically-based animation to create new animations [9, 16].
While this approach appears promising, to date, the control functions have
proven quite fragile when altered.

Our methodology falls into the last category of animation, that of interpo-
lation. A considerable amount of work has been undertaken with respect to
editing existing animations and blending between two segments [20, 7, 12].

Methods that have addressed modifying existing animation include Fourier
techniques as used by [23] to modify periodic motions. Amaya et al. used infor-

2



Figure 1: System overview

mation from one motion to modify the emotional content of another, primarily
through changes in timing and intensity of motion [1]. Both of these techniques
rely on periodic examples.

Bruderlin and Williams [5] use multitarget interpolation with dynamic time
warping to blend between motions. Linear interpolation over a set of example
motions is used by Wiley and Hahn [24] and Guo and Robergé [8]. Both of these
techniques use O(2d) examples and fail to address the usefulness of examples
with a limited region of influence.

As in the case of shape, we will concentrate on efficient multi-way blending
for animation. Rose et al.’s paper “Verbs and Adverbs” [19] has shown results
in this area using radial basis functions. The methods presented here extend
the ones described in this earlier article by showing that the authors did not
recognize a key mathematical feature of their system. We will discuss and
demonstrate a reformulation of their work that leads to a much more efficient
runtime system. This reformulation also allows us to apply the same ideas to
shape blending.

3 Shapes and Adjectives, Verbs and Adverbs

Figure 1 provides an overview of the three parts that comprise our system:
Shape and Verb Offline Tools, the Shape and Verb Generator, and the Shape
and Verb Runtime System. The latter is embedded in an application, such as a
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game, that uses our system to drive the animation of a character.
A designer relies on external modeling and animation systems and/or ge-

ometry and motion capture technology to create initial forms and motions. We
refer to these initial forms and motions as example forms and example motions,
or examples, for short.

The Shape and Verb Offline Tools enable the designer to organize these ex-
ample forms or motions that serve as input into our Shape and Verb Generator.
To do so, the designer must choose a set of adjectives that characterize the forms
or a set of adverbs that characterize the motions. The adjectives or adverbs de-
fine an abstract space. Each adjective or adverb represents a separate axis in
the abstract space.

For instance, adjectives that describe the form of a human arm may include
gender, age, and elbow bend. These axes are of interest because the form of
a human arm changes depending on whether it belongs to a male or female or
whether the person is old or young. The arm also deforms when the skeleton
bends. In the latter case we are not referring to the rigid body transformations
induced by, for instance, bending the elbow, but rather the more subtle non-
rigid changes in muscles and skin. Adverbs for a walk may include the walker’s
mood and aspects of the environment in which the walk takes place. A happy
walk is quite different from a sad or angry walk. Walks also differ with the slope
or the surface walked on.

Once the designer has defined the abstract space, each example form or
motion is annotated with its location in the abstract space. In addition, motion
examples are tagged with keytimes, such as the moment when each foot touches
the ground. The keytimes provide the means to perform automatic time warping
at runtime. The details of the time warping can be found in Rose et al. [19].

Based on the annotated examples and the abstract space, The Shape and
Verb Generator solves for the coefficients of a smoothly-varying interpolation of
the forms and motions across the abstract space. These coefficients provide the
means to interpolate between the example forms and motions at runtime. We
refer to the output produced by the Shape and Verb Generator as a shape when
interpolating forms and as a verb when interpolating motions.

At runtime, the application chooses at each moment in time desired values
for the adjectives or adverbs, thus defining a specific location in the abstract
space. For instance, a character can be set to be happy or sad or anywhere in
between; an arm can be specified to be more male or female, or to respond to the
bending of the elbow. The Shape and Verb Runtime System then responds to
the selected location in the abstract space by efficiently blending the annotated
examples to produce an interpolated form or motion.

The number of adverbs or adjectives defines the dimension of the abstract
space. We use D to denote the dimension. We denote the number of examples
included in the construction of a shape or verb by N . Each motion in a verb
as well as each form in a shape is required to have the same structure. That
is, all forms in a shape must have the same number of vertices with the same
connectivity. Since example forms must all have the same topological structure,
we do not need to address the correspondence problem here. Each motion
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Object Variable Subscript Range
Example X i 1..N
DOF x i 1..N

j 1..M
Point in Adverb Space p i
Radial basis R i
Radial Coefficient r i, j
Linear Basis A l 0..D
Linear Coefficient a i, l
Distance d i

Table 1: Terminology

in a verb must include the same number of curves that define the trajectory
of the character’s joints, and these curves must all have the same number of
control points defining them. All example motions in a particular verb must
also represent the same action. A set of example walks, for instance, must all
start out on the same foot, take the same number of steps, and have the same
arm swing phase. Thus, all examples (forms or motions) must have the same
number of degrees of freedom (DOF). The number of DOF, denoted by M ,
equals three times the number of vertices in a form (for the x,y,z coordinates).
In the case of a motion, the number of DOF is the number of joint trajectories
times the number of control points per curve.

As we describe more details of our approach, please refer to Table 1 for an
explanation of the symbols used throughout the text.

We denote an example as Xi, where

Xi = {xij ,pi, Km : i = 1 . . . N,

j = 1 . . . M, m = 0 . . .NumKeyTimes} (1)

Each xij , the jth DOF for the ith example represents a coordinate of a vertex
or, in the case of a motion, a uniform cubic B-spline curve control point. pi

is the location in the abstract space assigned to the example. K is the set of
keytimes which describe the phrasing (relative timing of the structural elements)
of the example in the case of a motion. Based on the keytime annotations for
each motion example, the curves are all time-warped into a common generic
time frame. Keytimes are, in essence, additional DOFs and are interpolated
at runtime to undo the time-warp. See Rose et al. for details on the use of
keytimes [19].

3.1 Shape and Verb Generation

Given a set of examples, a continuous interpolation over the abstract space is
generated for the shape or verb. The goal is to produce at any point p in the
abstract space a new motion or form X(p) derived through interpolation of the
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example motions. When p is equal to the position pi for a particular example i,
then X(p) should equal Xi. In between the examples, smooth intuitive changes
should take place.

In Rose et al. [19], each B-spline coefficient was treated as a separate inter-
polation problem (1200 separate problems in their walk verb) which leads to
inefficiencies. We develop, instead, a cardinal basis where we associate one basis
function with each example. As a cardinal basis, each basis function has a value
of 1 at the example location in the abstract space and a value of 0 at all other
example locations. This specification guarantees an exact interpolation. For
each DOF, the bases are simply scaled by the DOF values and then summed.
We show that this approach is not only equivalent to the formulation in Rose
et al., but also that it is (a) more efficient in the case of animations and (b) can
be applied to shape interpolation.

We still need to select the shape of the individual cardinal basis functions.
Our problem is essentially one of scattered data interpolation, as we have few
data points, the examples, in a relatively high dimensional space. Most pub-
lished scattered data interpolation methods focus on one and two-dimensional
problems. Linear interpolation using Delauney triangulation, for instance, does
not scale well in high dimensions. Based on our need to work in high dimensions
with very sparse samples, we adopt a combination of radial basis functions and
low order (linear) polynomials.

The cardinal basis we use has the form

wi1(p) =
N∑

i2=1

ri2i1Ri2(p) +
D∑

l=0

ai1lAl(p) (2)

where the ri2i1 and Ri are the radial basis function weights and radial basis
functions themselves and the ail

and Al are the linear coefficients and linear
bases. The subscripts i1 and i2 both indicate example indices. Given these
bases, the value of each DOF is computed at runtime based on the momentary
location, p, in the abstract space. The value of each DOF, xj , at location (p)
is, thus, given by:

xj(p) =
N∑

i1=1

wi1(p)xi1j (3)

.
The linear function provides an overall approximation to the space defined

by the examples and permits extrapolation outside the convex hull of the loca-
tions of the examples. The radial bases locally adjust the solution to exactly
interpolate the examples. We discuss the linear approximation and radial bases
in more detail below.

3.2 Linear Approximation

We first would like to form a best (in the least squares sense) linear approxima-
tion for each DOF based on the examples given for that DOF. In other words,
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Figure 2: Linear and radial parts of the cardinal basis function for the first
example.

we would like to find the hyperplane through the abstract space that comes clos-
est to approximating the example values of that DOF. This defines M separate
least squares problems, one for each DOF variable. However, since each example
places all variables at a single location, p, we can instead determine a set of N
hyperplanes, one for each example, that form a basis for the M hyperplanes.
The basis hyperplanes are derived by fitting a least squares hyperplane to the
case where one example has a value of 1 and the rest have a value of 0.

pha = F,

where ph is a matrix of homogeneous points in the abstract space (i.e., each row
is a point location followed by a 1), a are the unknown linear coefficients, and
F is a Fit matrix expressing the values we would like the linear approximation
to fit. In this case F is simply the identity matrix since we are constructing a
cardinal basis. Later, F will take on a slightly different structure as we discuss
reparameterization of the abstract space.

Figure 2 shows the linear approximation and the three radial basis functions
associated with the first of three examples for a simple one- dimensional abstract
space. The three examples are located at p = 0.15, 0.30, 0.75. The straight line
labeled A1 is the line that fits best through (0.15, 1), (0.30, 0), (0.75, 0). A best
fit hyperplane for any particular DOF could then be evaluated by simply scaling
the bases by the DOF values and summing.

3.3 Radial Basis

Radial basis interpolation is discussed in Micchelli [15] and in the survey article
by Powell [17]. Radial basis functions have been used in computer graphics
for image warping by Ruprecht and Müller [21], Arad et al. [2] and for 3D
interpolation by Turk et al. [22].
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Figure 3: Cardinal basis functions and scaled sum for particular degree of free-
dom.

Given the linear approximation, there still remain residuals between the
example values xij and the scaled and summed hyperplanes. To account for
the residuals, we could associate a radial basis with each DOF as in Rose et
al.. Instead, we proceed as before and use the radial bases to account for the
residuals in the cardinal bases. The residuals in the cardinal bases are given by

qi1i2 = δi1i2 −
D∑

l=0

ai2lAl(pi1)

To account for these residuals, we associate N radial basis functions with each
example. Since there are N examples, we, thus, need N2 radial basis functions.
We solve for the weights of each radial bases, ri2i1 , to account for the residuals
such that, when the weighted radial bases are summed with the hyperplanes,
they complete the cardinal bases.

This leaves us with the problem of choosing the specific shape of the radial
bases and determining the radial coefficients. Radial basis functions have the
form:

Ri (di(p))

where Ri is the radial basis associated with Xi and di(p) is a measure of the
distance between p and pi, most often the Euclidean norm ‖p−pi‖. There are
a number of choices for this basis. Rose et al. chose a basis with a cross section
of a cubic B-spline centered on the example and with radius twice the Euclidean
distance to the nearest other example. Turk and O’Brien [22] selected the basis

R(d) = d2log(|d|)
as this generates the smoothest (thin plate) interpolations. We tried both bases.
Bases with the B-spline cross-section have compact support, thus, outside their
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support, the cardinal bases are simply equal to the linear approximation. They
therefore extrapolate better than the smoother, but not compact, radial basis
functions used by Turk and O’Brien. We chose to use the B-spline bases for this
extrapolation property.

The radial bases weights, ri2i1 , can now be found by solving the matrix
system,

Qr = q

where r is an NxN matrix of the unknown radial bases weights and Q is defined
by the radial bases such that Qi1i2 = Ri2(pi1), the value of the unscaled radial
basis function centered on example i2 at the location of example i1. The diagonal
terms are all 2/3 since this is the value of the generic cubic B-spline at its center.
Many of the off diagonal terms are zero since the B-spline cross- sections drop
to zero at twice the distance to the nearest example.

Referring back to Figure 2, we see the three radial basis functions associated
with the first of the three examples. If these three are summed with the linear
approximation, we get the first cardinal basis, the line labeled w1 in Figure 3.
Note that it passes through 1 at the location of the first example and is 0 at the
other example locations. The same is true for the other two cardinal bases w2
and w3.

Given the solutions for the radial basis weights, we now have all the values
needed to evaluate equations 3 and 2 at runtime. The upper (blue) line in
Figure 3 is simply the three cardinal bases scaled by the example values and
summed as in equation 3.

3.4 Shape and Verb Runtime System

At runtime, the application selects the point of interest in the abstract space.
This point may move continuously from moment to moment, if for instance, the
character’s mood changes or the character begins to walk up or downhill. The
Shape and Verb Runtime System takes this point and generates an interpolated
form or motion and delivers it to the application for display.

3.5 A note on Complexity

The runtime complexity of the formulation in equations 3 and 2 is

MN + N(N + S) = MN + N2 + NS (4)

where M is the number of DOF variables, N is the number of examples, and S
is the dimension plus one of the abstract space.

In Rose et al. there was a separate linear hyperplane and radial basis per
DOF (approximately 1200 B-spline coefficients in their walking verb). The
complexity in their formulation is given by:

M(N + S) = MN + MS (5)
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Figure 4: Exploration of the space can reveal problems with the interpolation.

. In our formulation above there is only one set of linear bases and one set of
radial bases per example. The efficiency is gained due to the fact that there
are many fewer examples than DOF variables. For instance, if M=1200, N=10,
and S=6, then the comparison is MN + N2 + NS = 12, 160 vs. MN + MS +
N2 = 19, 200. Due to some additional constants the efficiencies are actually a
bit better. We have implemented both Rose et al.’s formulation and the one
presented here. We found an approximate speedup factor of about 2 in most
cases.

4 Reparameterization andModification of Shapes
and Verbs

Once a shape or verb has been generated, the abstract space can be quickly
explored to see the interpolated forms and motions. It is possible that some of
the regions in this space are not entirely to the designer’s liking. For instance,
Figure 4 shows a 2D space of interpolations of a simple three-dimensional shape.
Blue forms indicate examples and grey forms are the result of the Shape and
Verb Runtime System. Problem regions can be seen in each of the two upper
corners. Both corners exhibit cracks due to surface interpenetration. Another
type of problem can occur when an interpolation changes more quickly than
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Figure 5: Pseudo-examples can reparameterize the space, fixing up problem
regions.

desired in one region and more slowly than desired in a neighboring region. For
instance, at the point in the abstract space that is half way between a happy
walk and a sad walk, the character may appear more sad than happy, rather
than neutral.

Two methods are available to modify the results produced by the Shape and
Verb Generator. In one method a new example can be inserted at the problem
location and a new verb or shape generated. A quick way to bootstrap this
process is to use the undesirable results at the problem location as a starting
point, fix up the offending vertices or motion details and reinsert this into the
abstract space as a new example.

In the second method, the designer first selects an acceptable interpolated
form or motion from a location in the abstract space near the problem region.
Next, he/she moves this form to a location in the problem region. This relocated
form will be treated exactly the same as an example. We call this relocated form
a pseudo-example.

Going back to the problem with the walk verb described above, a neutral
walk cycle found elsewhere in the abstract space may be moved to the half way
point between happy and sad walks.

The place from which the pseudo-example is taken will be point p. We
denote the new position to which it is moved to as p̃. The pseudo-example is
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not a “true” example as it is a linear sum of other examples. However, it acts
like an example in terms of changing the shape of the radial basis functions. In
essence this method reparameterizes the abstract space. Reparameterization is
very effective in producing shapes of linked figures, as we demonstrate later with
a human arm shape. Figure 5 shows this technique applied to the 2D space of 3D
forms. The space has been reparameterized with two pseudo-examples shown in
red. Arrows indicate the locations from which the pseudo-examples were drawn.

Creating the reparameterized verb or shape proceeds much as before. We
need to introduce a few new notations before we can formalize the reparam-
eterization approach. We have already mentioned p̃, the new location of the
pseudo-examples. p̃ also includes the real example locations during reparame-
terization. We, furthermore, use a tilde to denote the new radial basis weights,
r̃, the new linear coefficients ã, and the new cardinal bases w̃. We also denote
the total number of real and pseudo-examples as Ñ .

As before, the form or motion at any point in the abstract space is:

xj(p) =
N∑

i1=1

w̃i1(p)xi1j (6)

Note that the interpolated form or motion still only includes a sum over the
real examples. In other words, there are still only N cardinal bases after the
reparameterization. The pseudo-examples reshape these N bases from w to w̃.

w̃i1(p) =
Ñ∑

i2=1

r̃i2i1Ri2(p) +
D∑

l=0

ãi1lAl(p) (7)

Also as before
p̃hã = F̃

However, F̃ is no longer an identity matrix. It now has Ñ rows and N columns.
Assuming the new pseudo-examples are all located at the bottom of the matrix,
the top NxN square is still an identity. The lower Ñ − N rows are the values
of the original cardinal bases w at the location where the pseudo-examples were
taken from (see equation 7). That is, in each row, the Fit matrix contains
the desired values of the N cardinal bases, now at Ñ locations. These are 1
or 0 for the real example locations and the original cardinal weights for the
pseudo-examples.

The radial portion of the cardinal basis construction proceeds similarly. The
residuals are now

q̃i1i2 = F̃i1i2 −
D∑

l=0

ãi2lAl(pi1)

Note that instead of the Kronecker delta we now have the values from F̃ .
The coefficients, r̃i2i1 , are now found by solving the matrix system,

Qr̃ = q̃
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As before, Qi1i2 has terms equal to Ri2(p̃i1), however, these terms now include
the new pseudo-example locations. As a consequence, the radii of the radial
basis functions may change.

5 Shapes and Skeletons

Animated characters are often represented as an articulated skeleton of links
connected by joints. Geometry is associated with each link and moves with the
link as the joints are rotated.

If the geometry associated with the links is represented as rigid bodies, these
parts of the character will separate and interpenetrate when a joint is rotated.
A standard way to create a continuous skinned model is to smoothly blend the
joint transforms associated with each link of the character. This is supported
in current graphics hardware, making it an attractive technique. This simple
method exhibits some problems. We use an arm bending at the elbow to discuss
the problems associated with transform blending and to demonstrate how we
can overcome these difficulties in the context of shape blending.

To perform the simple transform blending, a blending weight α is assigned
to each vertex. For instance, for the elbow bending, vertices sufficiently below
the elbow would have weight α = 1, and those sufficiently above, α = 0. Those
vertices near the elbow would have α values between 0 and 1.

We denote the transformation matrix for the upper arm as T0, and the
transformation for the lower arm as T1. We use superscripts to denote the
amount of rotation of the joint. Thus, as the elbow rotates, we say that T1
changes from T 0

1 when the elbow is straight to T 1
1 at a bent position. In between

the transform is T β
1 for a bending amount β. We refer to the position of the

arm when T1 = T 0
1 as the rest position.

We denote the position of a vertex as x0 when the transformation of the
joint is T 0

1 . The simple transform blending is defined as

x = αT β
1 x0 + (1 − α)T0x0

where α is the blending weight assigned to that vertex. Unfortunately, linearly
summed transformation matrices do not behave as one would like. The result
is that the skin appears to shrink near the rotating joint (see Figure 6). In
addition, simple transform blending does not provide a rich set of tools for
creating effects such as a muscle bulging as the elbow bends.

We can solve both problems with shape blending. To do this, the designer
first creates examples of a straight arm, Xβ=0, and a bent arm, Xβ=1, for, say,
a 90 degree bend (Figure 7). The bent arm includes any muscle bulging or
other deformations the designer wants to include. We obviously cannot simply
perform a direct geometric blend between these forms. At 45 degrees the lower
arm would have shrunk considerably, since the chord from the fingertip of the
bent arm to the fingertip of the straight arm passes nearer to the elbow than
an arc would.
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Figure 6: Simple transformation blending exhibits shrinking about joints.
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Figure 7: Example forms are warped into a cononical pose.

Instead, what we would like is a combination of transform blending and
shape blending. We call the vertex on the bent arm, corresponding to x0 on
the arm in the rest position, x1. As in the simple blended transforms, we also
have a blending weight, α, associated with each vertex. We now seek a second
arm in the rest position with a corresponding vertex, x1

0, such that when it is
subjected to the simple transform blending at an angle of β = 1 it will exactly
match the bent arm specified by the designer. Thus

x1 = αT β=1
1 x1

0 + (1 − α)T0x
1
0

Now we can solve for the vertices of this new arm in the rest position (see
Figure 7)

x1
0 = (αT β=1

1 + (1 − α)T0)−1x1 (8)

We can now first perform a geometric blend of the new arm in the rest
position with the original arm in the rest position and then transform it. The
result is

xβ = (αT β
1 + (1 − α)T0)(βx1

0 + (1 − β)x0) (9)

This geometric blend followed by the blended transform will match the original
arm geometry when β = 0 and will match the bent arm created by the designer
when β = 1.
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Figure 8: Naive transform blending vs. interpolated blending.

The arm model discussed above contains only two example forms, the arm
in the rest position and the bent arm. But we can now use all the machinery of
the previous sections to perform a multi-way blend of the articulated geometry.
First, all example forms are untransformed to the rest position via equation 8.
Then the multi-way shape blending is applied to the untransformed forms. Fi-
nally, the blending result is transformed in the normal way. In other words, the
interpolation of the forms in the rest position simply replaces the latter half of
equation 9. Figure 8 shows the straight arm example one of 6 examples in this
shape. The results above the straight arm are the result of naively blending
transforms on this one example. On the bottom right is a blend of the 6 exam-
ples untransformed to the rest position. Finally, this strange blended form is
pushed through the blended transformation to the give the result shown in the
upper right.

6 Results

We have applied the paradigm described above to a number of shapes and
linked-figure animations. We will discuss two of each. All performace statistics
measure raw interpolation speeds and do not include time to render. All timings
were gathered on a 450 Mhz Pentium-II machine.

6.1 Simple Shapes

The shape demonstrated in Figure 5 includes 5 example forms each consisting of
642 vertices and 1280 faces. Blending in this space can be done at 5500 frames
per second (fps).

One step of Loop subdivision is applied to this mesh and the limit positions
and normals are computed. This results in a mesh with 2562 vertices and 5120
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Figure 9: Blue arms are examples, red pseudo-exmaples, and gray generated by
the system.

faces that is rendered at runtime. A two dimensional abstract space was created
with the horizontal axis being “bend” and the vertical being “thickness.” The
initial space had regions in the upper right and left corners where the blended
surface was interpenetrating - the space was reparameterized by adding pseudo-
examples near these locations that were not interpenetrating. If real examples
had been added instead, the blending slows down to around 4000 fps.

6.2 Arm

The arm was created by modifying Viewpoint models inside 3D-Studio/Max.
The arm example has an underlying skeleton that has 3 rotational degrees of
freedom - one for the shoulder, elbow and wrist. We have a fourth variable
for the parameterized arm, gender. The abstract space has 8 real examples
(straight arm, shoulder up, shoulder down and elbow bent for male and female
models) and 6 pseudo-examples which are mostly placed to smooth out bulges
where the shrinking from blended transforms was being overcompensated for.
These examples have 1335 vertices and 2608 faces each. This dataset can be
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Figure 10: Health increases as y increases. Slope of surface ranges from sloping
to left to right.

interpolated at 2074 fps.
Figure 9 is a visualization of a 2D space of arms with 4 real examples, 1

pseudo-example. Elbow bend is parameterized along the horizontal axis and
gender along the vertical. Extrapolation can produce some interesting results.

6.3 Animation

We constructed parameterized motions, verbs, for two different characters: a
human figure named Stan and a robot warrior. While both bipedal, they move
in very different ways. Stan moves in a humanlike, though often exaggerated,
manner, while the robot warrior moves very mechanically. Our technique had
no trouble encompassing both forms. Our motion examples were chosen to
encompass emotional states such as mopiness, cockiness, fear, anger, and for
physical parameters such as damage and surface slope.

The verbs shown here were constructed from a mix of motion capture and
hand animated source. The motion capture data was gathered optically. The
hand-animated source was generated on two popular software animation pack-
ages: 3D-Studio/Max for the robot and Maya for some of Stan’s data. This
data is applied to a skeleton positioned with a translation at the root and a
hierarchy of Euler angle joints internally. A technique similar to Bodenheimer,
et. al.[4] ensured that the angles remained well- behaved.

Our robot warrior has 60 degrees of freedom. Our robot data exhibits two
primary kinds of variation: slope of walking surface and level of damage to the
robot. Damage results in limping and slope causes the character to rotate the
joints in the leg, foot, and waist, and shift weight to accommodate. Figure 10
shows a sampling of the robot walking verb. Green boxed figures are examples.
The others are interpolations and extrapolations. The verticle axis shows robot
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Figure 11: Knowledge increases from left to right. Happiness increases from
bottom to top.

health and the horizontal axis surface slope. Figure 12 shows the robots in the
center column of Figure 10 rotated to the side to better show the character
limping.

We constructed a number of robot verbs: powered-down idle, power-up,
powered-up idle, power-down, idle-to-walk, walk, and walk-to-idle. These verbs,
together with a transitioning mechanism can be combined to form a verb graph
such as discussed in Rose, et. al. [19]. The robot verbs evaluate at 9700 fps in
the absence of rendering. Thus, a robot evaluated using verbs can be run at 30
fps with only a 0.3% percent processor budget.

We also constructed a walking verb from a human figure, Stan, with 138
degrees of freedom. We chose 3 emotional axes for this verb which seemed to
encompass the gamut of variation present in the data. These were happy-to-
sad, knowledgeable-to-clueless, and low-to-high-energy. Our example motions
exhibit these subjective characteristics: easygoing, mopey, cocky, goofy, angry,
afraid, and neutral. Figure 11 shows a sampling of our walk along the knowledge
and happiness axes. Unlike the robot data, which was designed to fall at regular
places in the adverb plane, our Stan motions are less regular. As there are
no restrictions upon example placement, we are able to construct verbs with
irregular example placement, as shown by the green-boxed figures. Evaluating
a pose for Stan is extremely efficient: 3900 fps or a 0.7% processor budget at 30
fps.

19



Figure 12: Closer views of our robot and Stan

20



7 Conclusions

Shape and motion interpolation has been shown to be an effective and highly
efficient way of altering shape and motion for real-time applications such as
computer games. The front-end solution process is also efficient, (a fraction of
a second), so a tight coupling between artist, solver, and interpolator provides
a new way for an artist to work without fundamentally altering their workflow.
With our system, artists can more easily extend their work into the interactive
domain.

In the context of skeleton based figures, we are able to combine both shape
blending with blended transforms to create a smoothly skinned character. We
able to overcome the limitations of blended transforms, while including the
artist’s input for how muscles deform as the skeleton moves, and still maintain
interactive performance.

We intend to continue enhancing this work. In order to improve our design
cycle time, we intend to incorporate the system into a commercial 3D package.
While our processor requirements are low, improving efficiency is still a key goal.
We would like to be able to control many realistic characters at once with very
small processor budgets – on the order of one or two percent of the processor
budget. Memory usage patters and usage of SIMD floating point hardware such
as found on the Katmai (Pentium-III) chip will be explored.

Shape interpolation poses some interesting problems for level of detail. Sim-
plification hierarchies can be constructed to optimize for quality in the presence
of changing pose and shape. We intend to explore this facet as it is particularly
important for handling large numbers of characters such as in a crowd scene.
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